mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* add batch_predict and initialized api for c * add batch_predict and result str in C api * modify visualization function * add micro to add models batchify * refactor and add models for ppdet others * add base define * fix * refine predict api
120 lines
4.9 KiB
C++
120 lines
4.9 KiB
C++
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy_capi/vision/classification/ppcls/model.h"
|
|
|
|
#include "fastdeploy_capi/types_internal.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
FD_C_PaddleClasModelWrapper* FD_C_CreatePaddleClasModelWrapper(
|
|
const char* model_file, const char* params_file, const char* config_file,
|
|
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
|
const FD_C_ModelFormat model_format) {
|
|
auto& runtime_option = CHECK_AND_CONVERT_FD_TYPE(RuntimeOptionWrapper,
|
|
fd_c_runtime_option_wrapper);
|
|
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper =
|
|
new FD_C_PaddleClasModelWrapper();
|
|
fd_c_paddleclas_model_wrapper->paddleclas_model =
|
|
std::unique_ptr<fastdeploy::vision::classification::PaddleClasModel>(
|
|
new fastdeploy::vision::classification::PaddleClasModel(
|
|
std::string(model_file), std::string(params_file),
|
|
std::string(config_file), *runtime_option,
|
|
static_cast<fastdeploy::ModelFormat>(model_format)));
|
|
return fd_c_paddleclas_model_wrapper;
|
|
}
|
|
|
|
void FD_C_DestroyPaddleClasModelWrapper(
|
|
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper) {
|
|
delete fd_c_paddleclas_model_wrapper;
|
|
}
|
|
|
|
FD_C_Bool FD_C_PaddleClasModelWrapperPredict(
|
|
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper, FD_C_Mat img,
|
|
FD_C_ClassifyResult* fd_c_classify_result) {
|
|
cv::Mat* im = reinterpret_cast<cv::Mat*>(img);
|
|
auto& paddleclas_model = CHECK_AND_CONVERT_FD_TYPE(
|
|
PaddleClasModelWrapper, fd_c_paddleclas_model_wrapper);
|
|
FD_C_ClassifyResultWrapper* fd_c_classify_result_wrapper =
|
|
FD_C_CreateClassifyResultWrapper();
|
|
auto& classify_result = CHECK_AND_CONVERT_FD_TYPE(
|
|
ClassifyResultWrapper, fd_c_classify_result_wrapper);
|
|
|
|
bool successful = paddleclas_model->Predict(im, classify_result.get());
|
|
if (successful) {
|
|
FD_C_ClassifyResult* res =
|
|
FD_C_ClassifyResultWrapperGetData(fd_c_classify_result_wrapper);
|
|
*fd_c_classify_result = *res;
|
|
}
|
|
return successful;
|
|
}
|
|
|
|
FD_C_Bool FD_C_PaddleClasModelWrapperInitialized(
|
|
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper) {
|
|
auto& paddleclas_model = CHECK_AND_CONVERT_FD_TYPE(
|
|
PaddleClasModelWrapper, fd_c_paddleclas_model_wrapper);
|
|
return paddleclas_model->Initialized();
|
|
}
|
|
|
|
FD_C_ClassifyResult* FD_C_ClassifyResultToC(
|
|
fastdeploy::vision::ClassifyResult* classify_result) {
|
|
// Internal use, transfer fastdeploy::vision::ClassifyResult to
|
|
// FD_C_ClassifyResult
|
|
FD_C_ClassifyResult* fd_c_classify_result_data = new FD_C_ClassifyResult();
|
|
// copy label_ids
|
|
fd_c_classify_result_data->label_ids.size = classify_result->label_ids.size();
|
|
fd_c_classify_result_data->label_ids.data =
|
|
new int32_t[fd_c_classify_result_data->label_ids.size];
|
|
memcpy(fd_c_classify_result_data->label_ids.data,
|
|
classify_result->label_ids.data(),
|
|
sizeof(int32_t) * fd_c_classify_result_data->label_ids.size);
|
|
// copy scores
|
|
fd_c_classify_result_data->scores.size = classify_result->scores.size();
|
|
fd_c_classify_result_data->scores.data =
|
|
new float[fd_c_classify_result_data->scores.size];
|
|
memcpy(fd_c_classify_result_data->scores.data, classify_result->scores.data(),
|
|
sizeof(float) * fd_c_classify_result_data->scores.size);
|
|
fd_c_classify_result_data->type =
|
|
static_cast<FD_C_ResultType>(classify_result->type);
|
|
return fd_c_classify_result_data;
|
|
}
|
|
|
|
FD_C_Bool FD_C_PaddleClasModelWrapperBatchPredict(
|
|
FD_C_PaddleClasModelWrapper* fd_c_paddleclas_model_wrapper,
|
|
FD_C_OneDimMat imgs, FD_C_OneDimClassifyResult* results) {
|
|
std::vector<cv::Mat> imgs_vec;
|
|
std::vector<fastdeploy::vision::ClassifyResult> results_out;
|
|
for (int i = 0; i < imgs.size; i++) {
|
|
imgs_vec.push_back(*(reinterpret_cast<cv::Mat*>(imgs.data[i])));
|
|
}
|
|
auto& paddleclas_model = CHECK_AND_CONVERT_FD_TYPE(
|
|
PaddleClasModelWrapper, fd_c_paddleclas_model_wrapper);
|
|
bool successful = paddleclas_model->BatchPredict(imgs_vec, &results_out);
|
|
if (successful) {
|
|
// copy results back to FD_C_OneDimClassifyResult
|
|
results->size = results_out.size();
|
|
results->data = new FD_C_ClassifyResult[results->size];
|
|
for (int i = 0; i < results_out.size(); i++) {
|
|
results->data[i] = *FD_C_ClassifyResultToC(&results_out[i]);
|
|
}
|
|
}
|
|
return successful;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|