Files
FastDeploy/benchmark/cpp/benchmark_precision_ppyolov8.cc
DefTruth ee85a3cade [Benchmark] Add precision evaluation api from benchmark (#1310)
* [Benchmark] Init benchmark precision api

* [Benchmark] Init benchmark precision api

* [Benchmark] Add benchmark precision api

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Calculate the statis of diff

* [Benchmark] Add SplitDataLine utils

* [Benchmark] Add LexSortByXY func

* [Benchmark] Add LexSortByXY func

* [Benchmark] Add LexSortDetectionResultByXY func

* [Benchmark] Add LexSortDetectionResultByXY func

* [Benchmark] Add tensor diff presicion test

* [Benchmark] fixed conflicts

* [Benchmark] fixed calc tensor diff

* fixed build bugs

* fixed ci bugs when WITH_TESTING=ON
2023-02-16 17:16:14 +08:00

87 lines
3.6 KiB
C++

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
namespace vision = fastdeploy::vision;
namespace benchmark = fastdeploy::benchmark;
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
auto model_file = FLAGS_model + sep + "model.pdmodel";
auto params_file = FLAGS_model + sep + "model.pdiparams";
auto config_file = FLAGS_model + sep + "infer_cfg.yml";
auto model_ppyolov8 = vision::detection::PaddleYOLOv8(model_file, params_file,
config_file, option);
vision::DetectionResult res;
// Run once at least
model_ppyolov8.Predict(im, &res);
// 1. Test result diff
std::cout << "=============== Test result diff =================\n";
// Save result to -> disk.
std::string det_result_path = "ppyolov8_result.txt";
benchmark::ResultManager::SaveDetectionResult(res, det_result_path);
// Load result from <- disk.
vision::DetectionResult res_loaded;
benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path);
// Calculate diff between two results.
auto det_diff =
benchmark::ResultManager::CalculateDiffStatis(&res, &res_loaded);
std::cout << "diff: mean=" << det_diff.mean << ",max=" << det_diff.max
<< ",min=" << det_diff.min << std::endl;
// 2. Test tensor diff
std::cout << "=============== Test tensor diff =================\n";
std::vector<vision::DetectionResult> bacth_res;
std::vector<fastdeploy::FDTensor> input_tensors, output_tensors;
std::vector<cv::Mat> imgs;
imgs.push_back(im);
std::vector<vision::FDMat> fd_images = vision::WrapMat(imgs);
model_ppyolov8.GetPreprocessor().Run(&fd_images, &input_tensors);
input_tensors[0].name = "image";
input_tensors[1].name = "scale_factor";
input_tensors[2].name = "im_shape";
input_tensors.pop_back();
model_ppyolov8.Infer(input_tensors, &output_tensors);
model_ppyolov8.GetPostprocessor().Run(output_tensors, &bacth_res);
// Save tensor to -> disk.
auto& tensor_dump = output_tensors[0];
std::string det_tensor_path = "ppyolov8_tensor.txt";
benchmark::ResultManager::SaveFDTensor(tensor_dump, det_tensor_path);
// Load tensor from <- disk.
fastdeploy::FDTensor tensor_loaded;
benchmark::ResultManager::LoadFDTensor(&tensor_loaded, det_tensor_path);
// Calculate diff between two tensors.
auto det_tensor_diff = benchmark::ResultManager::CalculateDiffStatis(
&tensor_dump, &tensor_loaded);
std::cout << "diff: mean=" << det_tensor_diff.mean
<< ",max=" << det_tensor_diff.max << ",min=" << det_tensor_diff.min
<< std::endl;
// 3. Run profiling
BENCHMARK_MODEL(model_ppyolov8, model_ppyolov8.Predict(im, &res))
auto vis_im = vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
#endif
return 0;
}