mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
69 lines
2.7 KiB
C++
69 lines
2.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
namespace ocr {
|
|
/*! @brief Preprocessor object for Classifier serials model.
|
|
*/
|
|
class FASTDEPLOY_DECL ClassifierPreprocessor {
|
|
public:
|
|
/** \brief Process the input image and prepare input tensors for runtime
|
|
*
|
|
* \param[in] images The input data list, all the elements are FDMat
|
|
* \param[in] outputs The output tensors which will be fed into runtime
|
|
* \return true if the preprocess successed, otherwise false
|
|
*/
|
|
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
|
|
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
|
size_t start_index, size_t end_index);
|
|
|
|
/// Set mean value for the image normalization in classification preprocess
|
|
void SetMean(const std::vector<float>& mean) { mean_ = mean; }
|
|
/// Get mean value of the image normalization in classification preprocess
|
|
std::vector<float> GetMean() const { return mean_; }
|
|
|
|
/// Set scale value for the image normalization in classification preprocess
|
|
void SetScale(const std::vector<float>& scale) { scale_ = scale; }
|
|
/// Get scale value of the image normalization in classification preprocess
|
|
std::vector<float> GetScale() const { return scale_; }
|
|
|
|
/// Set is_scale for the image normalization in classification preprocess
|
|
void SetIsScale(bool is_scale) { is_scale_ = is_scale; }
|
|
/// Get is_scale of the image normalization in classification preprocess
|
|
bool GetIsScale() const { return is_scale_; }
|
|
|
|
/// Set cls_image_shape for the classification preprocess
|
|
void SetClsImageShape(const std::vector<int>& cls_image_shape) {
|
|
cls_image_shape_ = cls_image_shape;
|
|
}
|
|
/// Get cls_image_shape for the classification preprocess
|
|
std::vector<int> GetClsImageShape() const { return cls_image_shape_; }
|
|
|
|
private:
|
|
std::vector<float> mean_ = {0.5f, 0.5f, 0.5f};
|
|
std::vector<float> scale_ = {0.5f, 0.5f, 0.5f};
|
|
bool is_scale_ = true;
|
|
std::vector<int> cls_image_shape_ = {3, 48, 192};
|
|
};
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|