Files
FastDeploy/fastdeploy/benchmarks/latency.py
qwes5s5 e02a812880
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
[CLI]Update parameters in bench latecy cli tool and fix collect-env cli tool (#4558)
* add collect-env

* del files
2025-10-24 16:46:45 +08:00

138 lines
4.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# This file is modified from https://github.com/vllm-project/vllm/blob/main/vllm/benchmarks/latency.py
import argparse
import dataclasses
import json
import time
import numpy as np
from tqdm import tqdm
import fastdeploy.envs as envs
from fastdeploy.engine.args_utils import EngineArgs
def add_cli_args(parser: argparse.ArgumentParser):
parser.add_argument("--input-len", type=int, default=32)
parser.add_argument("--output-len", type=int, default=128)
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument(
"--n",
type=int,
default=1,
help="Number of generated sequences per prompt.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-iters-warmup",
type=int,
default=10,
help="Number of iterations to run for warmup.",
)
parser.add_argument("--num-iters", type=int, default=30, help="Number of iterations to run.")
parser.add_argument(
"--profile",
action="store_true",
help="profile the generation process of a single batch",
)
parser.add_argument(
"--output-json",
type=str,
default=None,
help="Path to save the latency results in JSON format.",
)
parser.add_argument(
"--disable-detokenize",
action="store_true",
help=("Do not detokenize responses (i.e. do not include " "detokenization time in the latency measurement)"),
)
parser = EngineArgs.add_cli_args(parser)
# V1 enables prefix caching by default which skews the latency
# numbers. We need to disable prefix caching by default.
parser.set_defaults(enable_prefix_caching=False)
def main(args: argparse.Namespace):
if args.profile and not envs.VLLM_TORCH_PROFILER_DIR:
raise OSError(
"The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. "
"Please set it to a valid path to use torch profiler."
)
engine_args = EngineArgs.from_cli_args(args)
# Lazy import to avoid importing LLM when the bench command is not selected.
from fastdeploy import LLM, SamplingParams
# NOTE(woosuk): If the request cannot be processed in a single batch,
# the engine will automatically process the request in multiple batches.
llm = LLM(**dataclasses.asdict(engine_args))
assert llm.llm_engine.cfg.model_config.max_model_len >= (args.input_len + args.output_len), (
"Please ensure that max_model_len is greater than" " the sum of input_len and output_len."
)
sampling_params = SamplingParams(
n=args.n,
temperature=1.0,
top_p=1.0,
max_tokens=args.output_len,
)
dummy_prompt_token_ids = np.random.randint(10000, size=(args.batch_size, args.input_len))
dummy_prompts = [{"prompt_token_ids": batch} for batch in dummy_prompt_token_ids.tolist()]
def llm_generate():
llm.generate(dummy_prompts, sampling_params=sampling_params, use_tqdm=False, stream=True)
def run_to_completion():
start_time = time.perf_counter()
llm_generate()
end_time = time.perf_counter()
latency = end_time - start_time
return latency
print("Warming up...")
for _ in tqdm(range(args.num_iters_warmup), desc="Warmup iterations"):
run_to_completion()
if args.profile:
print("Profiling...")
run_to_completion()
return
# Benchmark.
latencies = []
for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
latencies.append(run_to_completion())
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90, 99]
percentiles = np.percentile(latencies, percentages)
print(f"Avg latency: {np.mean(latencies)} seconds")
for percentage, percentile in zip(percentages, percentiles):
print(f"{percentage}% percentile latency: {percentile} seconds")
# Output JSON results if specified
if args.output_json:
results = {
"avg_latency": np.mean(latencies),
"latencies": latencies.tolist(),
"percentiles": dict(zip(percentages, percentiles.tolist())),
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)