mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00
494 lines
17 KiB
Python
494 lines
17 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import re
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
from fastdeploy.config import FDConfig
|
|
from fastdeploy.distributed.communication import tensor_model_parallel_all_reduce
|
|
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
|
from fastdeploy.model_executor.graph_optimization.decorator import (
|
|
support_graph_optimization,
|
|
)
|
|
from fastdeploy.model_executor.layers.activation import SiluAndMul
|
|
from fastdeploy.model_executor.layers.attention.attention import Attention
|
|
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
|
|
from fastdeploy.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
|
|
from fastdeploy.model_executor.layers.moe.moe import FusedMoE
|
|
from fastdeploy.model_executor.layers.normalization import RMSNorm
|
|
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
|
|
|
|
|
|
class Glm4MoeMLP(nn.Layer):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
intermediate_size: int,
|
|
prefix: str = "",
|
|
reduce_results: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.up_gate_proj = MergedColumnParallelLinear(
|
|
fd_config=fd_config,
|
|
prefix=f"{prefix}.up_gate_proj",
|
|
input_size=fd_config.model_config.hidden_size,
|
|
output_size=intermediate_size * 2,
|
|
with_bias=False,
|
|
activation=fd_config.model_config.hidden_act,
|
|
)
|
|
|
|
self.down_proj = RowParallelLinear(
|
|
fd_config=fd_config,
|
|
prefix=f"{prefix}.down_proj",
|
|
input_size=intermediate_size,
|
|
output_size=fd_config.model_config.hidden_size,
|
|
with_bias=False,
|
|
reduce_results=reduce_results,
|
|
)
|
|
|
|
self.act_fn = SiluAndMul(
|
|
fd_config=fd_config,
|
|
bias=None,
|
|
act_method=fd_config.model_config.hidden_act,
|
|
)
|
|
|
|
def forward(self, x):
|
|
""" """
|
|
gate_up_out = self.up_gate_proj(x)
|
|
act_out = self.act_fn(gate_up_out)
|
|
down_out = self.down_proj(act_out)
|
|
return down_out
|
|
|
|
|
|
class Glm4Moe(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
layer_id: int,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.expert_parallel_size = fd_config.parallel_config.expert_parallel_size
|
|
self.tensor_parallel_size = fd_config.parallel_config.tensor_parallel_size
|
|
self.tensor_parallel_rank = fd_config.parallel_config.tensor_parallel_rank
|
|
self.tp_group = fd_config.parallel_config.tp_group
|
|
|
|
self.use_ep = self.expert_parallel_size > 1
|
|
self.use_tp = self.tensor_parallel_size > 1
|
|
|
|
self.n_routed_experts: int = fd_config.model_config.n_routed_experts
|
|
self.n_shared_experts: int = fd_config.model_config.n_shared_experts
|
|
|
|
weight_key_map = {
|
|
"gate_correction_bias_key": f"{prefix}.gate.e_score_correction_bias",
|
|
"up_gate_proj_expert_weight_key": f"{prefix}.experts.{{}}.up_gate_proj.weight",
|
|
"down_proj_expert_weight_key": f"{prefix}.experts.{{}}.down_proj.weight",
|
|
}
|
|
|
|
self.gate = ReplicatedLinear(
|
|
fd_config=fd_config,
|
|
prefix=f"{prefix}.gate",
|
|
input_size=fd_config.model_config.hidden_size,
|
|
output_size=fd_config.model_config.n_routed_experts,
|
|
with_bias=False,
|
|
skip_quant=True,
|
|
weight_dtype="float32",
|
|
)
|
|
self.gate.e_score_correction_bias = self.create_parameter(
|
|
shape=[1, fd_config.model_config.n_routed_experts],
|
|
dtype="float32",
|
|
default_initializer=paddle.nn.initializer.Constant(0),
|
|
)
|
|
|
|
self.experts = FusedMoE(
|
|
fd_config,
|
|
reduce_results=False,
|
|
moe_intermediate_size=fd_config.model_config.moe_intermediate_size,
|
|
num_experts=fd_config.model_config.n_routed_experts,
|
|
top_k=fd_config.model_config.num_experts_per_tok,
|
|
topk_method="noaux_tc",
|
|
topk_group=fd_config.model_config.topk_group,
|
|
n_group=fd_config.model_config.n_group,
|
|
routed_scaling_factor=fd_config.model_config.routed_scaling_factor,
|
|
layer_idx=layer_id,
|
|
gate_correction_bias=self.gate.e_score_correction_bias,
|
|
weight_key_map=weight_key_map,
|
|
)
|
|
|
|
shared_experts_intermediate_size = self.n_shared_experts * fd_config.model_config.moe_intermediate_size
|
|
|
|
self.shared_experts = Glm4MoeMLP(
|
|
fd_config=fd_config,
|
|
intermediate_size=shared_experts_intermediate_size,
|
|
prefix=f"{prefix}.shared_experts",
|
|
reduce_results=False,
|
|
)
|
|
|
|
def forward(self, x):
|
|
shared_experts_out = self.shared_experts(x)
|
|
out = self.experts(x, self.gate)
|
|
out = out + shared_experts_out
|
|
# We do to TP all reduce after the sum of experts.
|
|
if self.tensor_parallel_size > 1:
|
|
tensor_model_parallel_all_reduce(out, self.tp_group)
|
|
return out
|
|
|
|
|
|
class Glm4MoeAttention(nn.Layer):
|
|
""" """
|
|
|
|
def __init__(self, fd_config: FDConfig, layer_id: int, prefix: str = "") -> None:
|
|
super().__init__()
|
|
|
|
tp_size = fd_config.parallel_config.tensor_parallel_size
|
|
self.fd_config = fd_config
|
|
self.head_dim = fd_config.model_config.head_dim
|
|
self.num_heads = fd_config.model_config.num_attention_heads // tp_size
|
|
self.num_kv_heads = fd_config.model_config.num_key_value_heads // tp_size
|
|
self.attention_bias = fd_config.model_config.attention_bias
|
|
self.use_qk_norm = fd_config.model_config.use_qk_norm
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
|
|
self.qkv_proj = QKVParallelLinear(fd_config, prefix=f"{prefix}.qkv_proj", with_bias=self.attention_bias)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
fd_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
input_size=fd_config.model_config.num_attention_heads * fd_config.model_config.head_dim,
|
|
output_size=fd_config.model_config.hidden_size,
|
|
)
|
|
|
|
self.attn = Attention(
|
|
fd_config,
|
|
layer_id=layer_id,
|
|
prefix=prefix,
|
|
use_neox_rotary_style=True,
|
|
rms_norm_eps=fd_config.model_config.rms_norm_eps,
|
|
)
|
|
if self.use_qk_norm:
|
|
self.q_norm = RMSNorm(
|
|
fd_config,
|
|
hidden_size=self.head_dim,
|
|
eps=fd_config.model_config.rms_norm_eps,
|
|
prefix=f"{prefix}.q_norm",
|
|
begin_norm_axis=2,
|
|
)
|
|
self.k_norm = RMSNorm(
|
|
fd_config,
|
|
hidden_size=self.head_dim,
|
|
eps=fd_config.model_config.rms_norm_eps,
|
|
prefix=f"{prefix}.k_norm",
|
|
begin_norm_axis=2,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
forward_meta: ForwardMeta,
|
|
hidden_states: paddle.Tensor,
|
|
):
|
|
""" """
|
|
qkv_out = self.qkv_proj(hidden_states)
|
|
|
|
if self.use_qk_norm:
|
|
q, k, v = qkv_out.split([self.q_size, self.kv_size, self.kv_size], axis=-1)
|
|
q = self.q_norm(q.reshape([-1, self.num_heads, self.head_dim])).reshape(q.shape)
|
|
k = self.k_norm(k.reshape([-1, self.num_kv_heads, self.head_dim])).reshape(k.shape)
|
|
qkv_out = paddle.concat([q, k, v], axis=-1)
|
|
|
|
atten_out = self.attn(
|
|
qkv=qkv_out,
|
|
forward_meta=forward_meta,
|
|
)
|
|
output = self.o_proj(atten_out)
|
|
return output
|
|
|
|
|
|
class Glm4MoeDecoderLayer(nn.Layer):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
layer_id = int(prefix.split(sep=".")[-1])
|
|
self.self_attn = Glm4MoeAttention(
|
|
fd_config=fd_config,
|
|
layer_id=layer_id,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
|
|
if (
|
|
fd_config.model_config.n_routed_experts is not None
|
|
and layer_id >= fd_config.model_config.first_k_dense_replace
|
|
):
|
|
self.mlp = Glm4Moe(fd_config, layer_id, prefix=f"{prefix}.mlp")
|
|
else:
|
|
self.mlp = Glm4MoeMLP(
|
|
fd_config,
|
|
intermediate_size=fd_config.model_config.intermediate_size,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
|
|
self.input_layernorm = RMSNorm(
|
|
fd_config,
|
|
hidden_size=fd_config.model_config.hidden_size,
|
|
eps=fd_config.model_config.rms_norm_eps,
|
|
prefix=f"{prefix}.input_layernorm",
|
|
)
|
|
|
|
self.post_attention_layernorm = RMSNorm(
|
|
fd_config,
|
|
hidden_size=fd_config.model_config.hidden_size,
|
|
eps=fd_config.model_config.rms_norm_eps,
|
|
prefix=f"{prefix}.post_attention_layernorm",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
forward_meta: ForwardMeta,
|
|
hidden_states: paddle.Tensor,
|
|
residual: paddle.Tensor = None,
|
|
):
|
|
""" """
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
|
|
hidden_states = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
forward_meta=forward_meta,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
|
|
|
hidden_states = self.mlp(hidden_states)
|
|
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_graph_optimization
|
|
class Glm4MoeModel(nn.Layer):
|
|
""" """
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig = None,
|
|
):
|
|
"""
|
|
Initializer for the Qwen2Model class.
|
|
|
|
Args:
|
|
|
|
"""
|
|
super().__init__()
|
|
|
|
self.num_layers = fd_config.model_config.num_hidden_layers
|
|
fd_config.model_config.pretrained_config.prefix_name = "model"
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
fd_config,
|
|
num_embeddings=fd_config.model_config.vocab_size,
|
|
embedding_dim=fd_config.model_config.hidden_size,
|
|
params_dtype=paddle.get_default_dtype,
|
|
prefix=(f"{fd_config.model_config.pretrained_config.prefix_name}.embed_tokens"),
|
|
)
|
|
|
|
self.layers = nn.LayerList(
|
|
[
|
|
Glm4MoeDecoderLayer(
|
|
fd_config,
|
|
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.layers.{i}",
|
|
)
|
|
for i in range(self.num_layers)
|
|
]
|
|
)
|
|
|
|
self.norm = RMSNorm(
|
|
fd_config,
|
|
hidden_size=fd_config.model_config.hidden_size,
|
|
eps=fd_config.model_config.rms_norm_eps,
|
|
prefix=f"{fd_config.model_config.pretrained_config.prefix_name}.norm",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
ids_remove_padding: paddle.Tensor,
|
|
forward_meta: ForwardMeta,
|
|
):
|
|
""" """
|
|
hidden_states = self.embed_tokens(ids_remove_padding=ids_remove_padding)
|
|
|
|
residual = None
|
|
|
|
for i in range(self.num_layers):
|
|
hidden_states, residual = self.layers[i](forward_meta, hidden_states, residual)
|
|
hidden_states = hidden_states + residual
|
|
|
|
out = self.norm(hidden_states)
|
|
|
|
return out
|
|
|
|
|
|
class Glm4MoeForCausalLM(ModelForCasualLM):
|
|
"""
|
|
Glm4MoeForCausalLM
|
|
"""
|
|
|
|
def __init__(self, fd_config: FDConfig):
|
|
"""
|
|
Args:
|
|
fd_config (FDConfig): Configurations for the LLM model.
|
|
"""
|
|
super(Glm4MoeForCausalLM, self).__init__(fd_config)
|
|
|
|
self.model = Glm4MoeModel(fd_config)
|
|
|
|
self.ori_vocab_size = fd_config.model_config.ori_vocab_size
|
|
|
|
self.lm_head = ParallelLMHead(
|
|
fd_config,
|
|
embedding_dim=fd_config.model_config.hidden_size,
|
|
num_embeddings=fd_config.model_config.vocab_size,
|
|
prefix="lm_head",
|
|
)
|
|
|
|
@classmethod
|
|
def name(self):
|
|
""" """
|
|
return "Glm4MoeForCausalLM"
|
|
|
|
@paddle.no_grad()
|
|
def load_weights(self, weights_iterator) -> None:
|
|
"""
|
|
Load model parameters from a given weights_iterator object.
|
|
|
|
Args:
|
|
weights_iterator (Iterator): An iterator yielding (name, weight) pairs.
|
|
"""
|
|
|
|
from fastdeploy.model_executor.utils import (
|
|
default_weight_loader,
|
|
process_weights_after_loading,
|
|
)
|
|
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("up_gate_proj", "gate_proj", "gate"),
|
|
("up_gate_proj", "up_proj", "up"),
|
|
("embed_tokens.embeddings", "embed_tokens", None),
|
|
("lm_head.linear", "lm_head", None),
|
|
("experts.gate_correction_bias", "gate.e_score_correction_bias", None),
|
|
]
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
|
num_experts=self.fd_config.model_config.n_routed_experts,
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
param_gate_up_proj_name="experts.up_gate_proj_",
|
|
param_down_proj_name="experts.down_proj_",
|
|
)
|
|
params_dict = dict(self.named_parameters())
|
|
process_weights_after_loading_fn = process_weights_after_loading(dict(self.named_sublayers()))
|
|
for loaded_weight_name, loaded_weight in weights_iterator:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in loaded_weight_name:
|
|
continue
|
|
if "mlp.experts" in loaded_weight_name:
|
|
continue
|
|
model_param_name = loaded_weight_name.replace(weight_name, param_name)
|
|
if model_param_name not in params_dict:
|
|
continue
|
|
param = params_dict[model_param_name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in loaded_weight_name:
|
|
continue
|
|
model_param_name = loaded_weight_name.replace(weight_name, param_name)
|
|
if model_param_name not in params_dict:
|
|
continue
|
|
param = params_dict[model_param_name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id=shard_id, expert_id=expert_id)
|
|
break
|
|
else:
|
|
model_param_name = loaded_weight_name
|
|
if model_param_name not in params_dict:
|
|
continue
|
|
param = params_dict[model_param_name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader(self.fd_config))
|
|
weight_loader(param, loaded_weight)
|
|
|
|
model_sublayer_name = re.sub(r"\.(up_gate_proj_weight|down_proj_weight|weight)$", "", model_param_name)
|
|
process_weights_after_loading_fn(model_sublayer_name, param)
|
|
|
|
@paddle.no_grad()
|
|
def set_state_dict(self, state_dict):
|
|
"""
|
|
glm4_moe only support loader_v1.
|
|
"""
|
|
assert False, "glm4_moe only support --load_choices default_v1."
|
|
|
|
def compute_logits(self, hidden_states: paddle.Tensor):
|
|
""" """
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.astype(paddle.float32)
|
|
logits[:, self.ori_vocab_size :] = -float("inf")
|
|
|
|
return logits
|
|
|
|
def forward(
|
|
self,
|
|
ids_remove_padding: paddle.Tensor,
|
|
forward_meta: ForwardMeta,
|
|
):
|
|
""" """
|
|
hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
|
|
|
|
return hidden_states
|
|
|
|
def clear_grpah_opt_backend(self):
|
|
"""Clear graph optimization backend, the captured cuda graph will be cleaned"""
|
|
self.model.clear_grpah_opt_backend(fd_config=self.fd_config)
|