mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			620 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			620 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | ||
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | ||
| #
 | ||
| # Licensed under the Apache License, Version 2.0 (the "License"
 | ||
| # you may not use this file except in compliance with the License.
 | ||
| # You may obtain a copy of the License at
 | ||
| #
 | ||
| #     http://www.apache.org/licenses/LICENSE-2.0
 | ||
| #
 | ||
| # Unless required by applicable law or agreed to in writing, software
 | ||
| # distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| # See the License for the specific language governing permissions and
 | ||
| # limitations under the License.
 | ||
| """
 | ||
| 
 | ||
| from abc import ABC, abstractmethod
 | ||
| 
 | ||
| import numpy as np
 | ||
| from paddleformers.generation import GenerationConfig
 | ||
| from paddleformers.transformers import Llama3Tokenizer, LlamaTokenizer
 | ||
| 
 | ||
| from fastdeploy import envs
 | ||
| from fastdeploy.utils import data_processor_logger
 | ||
| 
 | ||
| _SAMPLING_EPS = 1e-5
 | ||
| 
 | ||
| 
 | ||
| class BaseDataProcessor(ABC):
 | ||
|     """base class for data processor"""
 | ||
| 
 | ||
|     def __init__(self):
 | ||
|         """
 | ||
|         Returns:
 | ||
|             None
 | ||
|         """
 | ||
|         self.tokenizer = self._load_tokenizer()
 | ||
|         self.tokenizer.bos_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.bos_token)
 | ||
|         self.tokenizer.cls_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.cls_token)
 | ||
|         self.tokenizer.sep_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.sep_token)
 | ||
|         self.tokenizer.eos_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.eos_token)
 | ||
|         self.tokenizer.mask_token_id = self.tokenizer._convert_token_to_id(self.tokenizer.mask_token)
 | ||
|         data_processor_logger.info(
 | ||
|             (
 | ||
|                 f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, ",
 | ||
|                 f"cls_token is {self.tokenizer.cls_token}, {self.tokenizer.cls_token_id}, "
 | ||
|                 f"sep_token is {self.tokenizer.sep_token}, {self.tokenizer.sep_token_id}, "
 | ||
|                 f"eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id}, "
 | ||
|                 f"mask_token is {self.tokenizer.mask_token}, {self.tokenizer.mask_token_id}",
 | ||
|             )
 | ||
|         )
 | ||
| 
 | ||
|     def _apply_default_parameters(self, request):
 | ||
|         """
 | ||
|         Apply default value for parameters in request
 | ||
|         """
 | ||
| 
 | ||
|         def set_value(req, key, value):
 | ||
|             value = getattr(self.generation_config, key, value)
 | ||
|             if isinstance(req, dict):
 | ||
|                 if key not in req:
 | ||
|                     req[key] = value
 | ||
|             else:
 | ||
|                 if req.get(key) is None:
 | ||
|                     req.set(key, value)
 | ||
| 
 | ||
|         set_value(request, "top_p", 0.7)
 | ||
|         set_value(request, "temperature", 1.0)
 | ||
|         set_value(request, "repetition_penalty", 1.0)
 | ||
|         set_value(request, "frequency_penalty", 0.0)
 | ||
|         set_value(request, "presence_penalty", 0.0)
 | ||
|         return request
 | ||
| 
 | ||
|     @abstractmethod
 | ||
|     def process_request(self, request, **kwargs):
 | ||
|         """
 | ||
|         Preprocess the request
 | ||
| 
 | ||
|         Args:
 | ||
|             request (Dict): may contain text and messages fields
 | ||
|             **kwargs: others
 | ||
| 
 | ||
|         Returns:
 | ||
|             bool: Whether preprocessing is successful
 | ||
|             str: error message
 | ||
|         """
 | ||
|         raise NotImplementedError
 | ||
| 
 | ||
|     @abstractmethod
 | ||
|     def process_response(self, response_dict):
 | ||
|         """
 | ||
|         Preprocess the response
 | ||
| 
 | ||
|         Args:
 | ||
|             response_dict (Dict): response for engine, contain ids fields
 | ||
| 
 | ||
|         Returns:
 | ||
|             Dict: response contain text fields
 | ||
|         """
 | ||
|         raise NotImplementedError
 | ||
| 
 | ||
|     def text2ids(self, text, max_model_len=None):
 | ||
|         """
 | ||
|         text to token ids
 | ||
| 
 | ||
|         Args:
 | ||
|             text (str): text
 | ||
| 
 | ||
|         Returns:
 | ||
|             List[int]: token ids list
 | ||
|         """
 | ||
|         raise NotImplementedError
 | ||
| 
 | ||
|     def messages2ids(self, messages):
 | ||
|         """
 | ||
|         Convert multi-turn messages into ID sequences.
 | ||
| 
 | ||
|         Args:
 | ||
|             messages (List[List[Dict[str, Any]]]): multi-turn messages.
 | ||
| 
 | ||
|         Returns:
 | ||
|             List[int]: ID sequences
 | ||
|         """
 | ||
|         raise NotImplementedError
 | ||
| 
 | ||
|     def ids2tokens(self, token_id, task_id=None):
 | ||
|         """
 | ||
|         token ids to strings
 | ||
| 
 | ||
|         Args:
 | ||
|             token_id (List[int]): token id
 | ||
|                         task_id (str): task id
 | ||
| 
 | ||
|         Returns:
 | ||
|             List[str]: strings
 | ||
|         """
 | ||
|         raise NotImplementedError
 | ||
| 
 | ||
|     @abstractmethod
 | ||
|     def _load_tokenizer(self):
 | ||
|         """
 | ||
|         load tokenizer
 | ||
| 
 | ||
|         Returns:
 | ||
|             tokenizer (AutoTokenizer)
 | ||
|         """
 | ||
|         raise NotImplementedError
 | ||
| 
 | ||
| 
 | ||
| class DataProcessor(BaseDataProcessor):
 | ||
|     def __init__(self, model_name_or_path, reasoning_parser_obj=None):
 | ||
|         """
 | ||
|             Initializes the DecodeStatus object.
 | ||
| 
 | ||
|         Args:
 | ||
|             model_name_or_path (str): The name or path of the pre-trained model to be loaded.
 | ||
|                 Can also be a path to a directory containing the pre-trained model file.
 | ||
| 
 | ||
|         Returns:
 | ||
|             None.
 | ||
| 
 | ||
|         Raises:
 | ||
|             None.
 | ||
|         """
 | ||
| 
 | ||
|         self.model_name_or_path = model_name_or_path
 | ||
| 
 | ||
|         self._init_config()
 | ||
| 
 | ||
|         self.decode_status = dict()
 | ||
|         self.tokenizer = self._load_tokenizer()
 | ||
|         data_processor_logger.info(
 | ||
|             f"tokenizer information: bos_token is {self.tokenizer.bos_token}, {self.tokenizer.bos_token_id}, \
 | ||
|                                 eos_token is {self.tokenizer.eos_token}, {self.tokenizer.eos_token_id} "
 | ||
|         )
 | ||
| 
 | ||
|         from paddleformers.trl.llm_utils import get_eos_token_id
 | ||
| 
 | ||
|         self.eos_token_ids = get_eos_token_id(self.tokenizer, self.generation_config)
 | ||
|         self.eos_token_id_len = len(self.eos_token_ids)
 | ||
|         self.pad_token_id = self.get_pad_id()
 | ||
|         self.reasoning_parser = None
 | ||
|         if reasoning_parser_obj:
 | ||
|             self.reasoning_parser = reasoning_parser_obj(self.tokenizer)
 | ||
|         self.tokenizer.pad_token_id = self.pad_token_id
 | ||
| 
 | ||
|     def _init_config(self):
 | ||
|         """
 | ||
|             初始化配置,包括模型名称、使用Hugging Face Tokenizer等。
 | ||
| 
 | ||
|         Args:
 | ||
|             无参数,但是会从环境变量中获取一些配置信息。
 | ||
| 
 | ||
|         Returns:
 | ||
|             无返回值,直接修改了类的属性。
 | ||
| 
 | ||
|         Raises:
 | ||
|             无异常抛出。
 | ||
|         """
 | ||
|         self.use_hf_tokenizer = int(envs.FD_USE_HF_TOKENIZER) == 1
 | ||
| 
 | ||
|         # Generation config
 | ||
|         try:
 | ||
|             self.generation_config = GenerationConfig.from_pretrained(self.model_name_or_path)
 | ||
|         except Exception as e:
 | ||
|             data_processor_logger.warning(
 | ||
|                 f"Can't find generation config: {e}, so it will not use generation_config field in the model config"
 | ||
|             )
 | ||
|             self.generation_config = None
 | ||
| 
 | ||
|     def process_request(self, request, max_model_len=None, **kwargs):
 | ||
|         """
 | ||
|         Preprocess the request
 | ||
| 
 | ||
|         Args:
 | ||
|             request (Dict): may contain text and messages fields
 | ||
| 
 | ||
|         Returns:
 | ||
|             bool: Whether preprocessing is successful
 | ||
|             str: error message
 | ||
|         """
 | ||
|         request = self._apply_default_parameters(request)
 | ||
|         if request.get("eos_token_ids") is None or len(request.eos_token_ids) == 0:
 | ||
|             request.eos_token_ids = self.eos_token_ids
 | ||
| 
 | ||
|         stop_sequences = request.get("stop", [])
 | ||
|         if stop_sequences is not None and len(stop_sequences) != 0:
 | ||
|             stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
 | ||
|             request.set("stop_token_ids", stop_seqs)
 | ||
|             request.set("stop_seqs_len", stop_seqs_len)
 | ||
| 
 | ||
|         if request.prompt_token_ids is None or len(request.prompt_token_ids) == 0:
 | ||
|             if request.prompt is not None:
 | ||
|                 request.prompt_token_ids = self.text2ids(request.prompt, max_model_len)
 | ||
|             elif request.messages is not None:
 | ||
|                 if self.tokenizer.chat_template is None:
 | ||
|                     raise ValueError("This model does not support chat_template.")
 | ||
|                 task = request.to_dict()
 | ||
|                 task["enable_thinking"] = kwargs.get("enable_thinking", True)
 | ||
|                 request.prompt_token_ids = self.messages2ids(task)
 | ||
|             else:
 | ||
|                 raise ValueError(f"The request should have `input_ids`, `text` or `messages`: {request}.")
 | ||
|         if len(request.prompt_token_ids) == 0:
 | ||
|             raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
 | ||
|         if request.get("max_tokens") is None:
 | ||
|             request.set(
 | ||
|                 "max_tokens",
 | ||
|                 max(1, max_model_len - len(request.prompt_token_ids)),
 | ||
|             )
 | ||
|         if request.get("temperature") < _SAMPLING_EPS:
 | ||
|             # zero temperature is equivalent to greedy sampling
 | ||
|             request.set("temperature", 1)
 | ||
|         if request.get("top_p") < _SAMPLING_EPS:
 | ||
|             request.set("top_p", _SAMPLING_EPS)
 | ||
|         data_processor_logger.info(f"Processed request {request}")
 | ||
|         return request
 | ||
| 
 | ||
|     def process_request_dict(self, request, max_model_len=None, **kwargs):
 | ||
|         """
 | ||
|         Preprocess the request
 | ||
| 
 | ||
|         Args:
 | ||
|             request (Dict): may contain text and messages fields
 | ||
| 
 | ||
|         Returns:
 | ||
|             bool: Whether preprocessing is successful
 | ||
|             str: error message
 | ||
|         """
 | ||
|         request = self._apply_default_parameters(request)
 | ||
|         if not request.get("eos_token_ids"):
 | ||
|             request["eos_token_ids"] = self.eos_token_ids
 | ||
| 
 | ||
|         # processing stop_sequences
 | ||
|         stop_sequences = request.get("stop", [])
 | ||
|         if stop_sequences:
 | ||
|             stop_seqs, stop_seqs_len = self.update_stop_seq(stop_sequences)
 | ||
|             request["stop_token_ids"] = stop_seqs
 | ||
|             request["stop_seqs_len"] = stop_seqs_len
 | ||
| 
 | ||
|         data_processor_logger.info(f"Processing request {request}")
 | ||
|         # processing prompt_token_ids
 | ||
|         if not request.get("prompt_token_ids"):
 | ||
|             if "prompt" in request:
 | ||
|                 request["prompt_token_ids"] = self.text2ids(request["prompt"], max_model_len).tolist()
 | ||
|             elif "messages" in request:
 | ||
|                 if self.tokenizer.chat_template is None:
 | ||
|                     raise ValueError("This model does not support chat_template.")
 | ||
|                 request["prompt_token_ids"] = self.messages2ids(request)
 | ||
|             else:
 | ||
|                 raise ValueError(f"Request must contain 'prompt_token_ids', 'prompt', or 'messages': {request}")
 | ||
|         if len(request["prompt_token_ids"]) == 0:
 | ||
|             raise ValueError("Invalid input: prompt_token_ids must be a non-empty sequence of token IDs")
 | ||
|         if request.get("max_tokens") is None:
 | ||
|             request["max_tokens"] = max(1, max_model_len - len(request["prompt_token_ids"]))
 | ||
|         if request.get("temperature") < _SAMPLING_EPS:
 | ||
|             # zero temperature is equivalent to greedy sampling
 | ||
|             request["temperature"] = 1
 | ||
|         if request.get("top_p") < _SAMPLING_EPS:
 | ||
|             request["top_p"] = _SAMPLING_EPS
 | ||
|         data_processor_logger.info(f"Processed request {request}")
 | ||
|         return request
 | ||
| 
 | ||
|     def process_logprob_response(self, token_ids, **kwargs):
 | ||
|         full_text = self.tokenizer.decode(token_ids, **kwargs)
 | ||
|         return full_text
 | ||
| 
 | ||
|     def process_response(self, response_dict, **kwargs):
 | ||
|         """
 | ||
|         Preprocess the response
 | ||
| 
 | ||
|         Args:
 | ||
|             response_dict (Dict): response for engine, contain ids fields
 | ||
| 
 | ||
|         Returns:
 | ||
|             Dict: response contain text fields
 | ||
|         """
 | ||
|         req_id = response_dict.request_id
 | ||
|         token_ids = response_dict.outputs.token_ids
 | ||
|         if token_ids[-1] == self.tokenizer.eos_token_id:
 | ||
|             token_ids = token_ids[:-1]
 | ||
|         full_text = self.tokenizer.decode(token_ids)
 | ||
| 
 | ||
|         # 模型支持思考,并且支持思考
 | ||
|         if self.reasoning_parser:
 | ||
|             reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
 | ||
|             response_dict.outputs.text = text
 | ||
|             response_dict.outputs.reasoning_content = reasoning_content
 | ||
|         else:
 | ||
|             # 模型不支持思考,并且没单独设置enable_thinking为false
 | ||
|             response_dict.outputs.text = full_text
 | ||
|         data_processor_logger.info(f"req_id:{req_id}, token)ids: {token_ids}")
 | ||
| 
 | ||
|         return response_dict
 | ||
| 
 | ||
|     def process_response_dict_normal(self, response_dict, **kwargs):
 | ||
|         """
 | ||
|         Preprocess the response
 | ||
| 
 | ||
|         Args:
 | ||
|             response_dict (Dict): response for engine, contain ids fields
 | ||
| 
 | ||
|         Returns:
 | ||
|             Dict: response contain text fields
 | ||
|         """
 | ||
|         enable_thinking = kwargs.get("enable_thinking")
 | ||
|         token_ids = response_dict["outputs"]["token_ids"]
 | ||
|         is_end = response_dict["finished"]
 | ||
|         req_id = response_dict["request_id"]
 | ||
|         if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
 | ||
|             if token_ids[-1] == self.tokenizer.eos_token_id:
 | ||
|                 token_ids = token_ids[:-1]
 | ||
|         delta_text, _, previous_texts = self.ids2tokens(token_ids, req_id)
 | ||
|         if is_end:
 | ||
|             full_text = previous_texts + delta_text
 | ||
|             if enable_thinking and self.reasoning_parser:
 | ||
|                 reasoning_content, text = self.reasoning_parser.extract_reasoning_content(full_text, response_dict)
 | ||
|                 response_dict["outputs"]["text"] = text
 | ||
|                 response_dict["outputs"]["reasoning_content"] = reasoning_content
 | ||
|             else:
 | ||
|                 response_dict["outputs"]["text"] = full_text
 | ||
|             data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
 | ||
|             del self.decode_status[req_id]
 | ||
|         return response_dict
 | ||
| 
 | ||
|     def process_response_dict_streaming(self, response_dict, **kwargs):
 | ||
|         """
 | ||
|         Preprocess the response
 | ||
| 
 | ||
|         Args:
 | ||
|             response_dict (Dict): response for engine, contain ids fields
 | ||
| 
 | ||
|         Returns:
 | ||
|             Dict: response contain text fields
 | ||
|         """
 | ||
|         enable_thinking = kwargs.get("enable_thinking")
 | ||
|         is_end = response_dict["finished"]
 | ||
|         req_id = response_dict["request_id"]
 | ||
|         token_ids = response_dict["outputs"]["token_ids"]
 | ||
| 
 | ||
|         if is_end and len(token_ids) > 0 and not kwargs.get("include_stop_str_in_output"):
 | ||
|             if token_ids[-1] == self.tokenizer.eos_token_id:
 | ||
|                 token_ids = token_ids[:-1]
 | ||
|         delta_text, previous_token_ids, previous_texts = self.ids2tokens(token_ids, req_id)
 | ||
| 
 | ||
|         if enable_thinking and self.reasoning_parser:
 | ||
|             reasoning_content, text = self.reasoning_parser.extract_reasoning_content_streaming(
 | ||
|                 previous_texts,
 | ||
|                 previous_texts + delta_text,
 | ||
|                 delta_text,
 | ||
|                 previous_token_ids,
 | ||
|                 previous_token_ids + token_ids,
 | ||
|                 token_ids,
 | ||
|             )
 | ||
|             response_dict["outputs"]["text"] = text
 | ||
|             response_dict["outputs"]["reasoning_content"] = reasoning_content
 | ||
|         else:
 | ||
|             response_dict["outputs"]["text"] = delta_text
 | ||
|         if is_end:
 | ||
|             data_processor_logger.info(f"req_id:{req_id}, decode_status: {self.decode_status[req_id]}")
 | ||
|             del self.decode_status[req_id]
 | ||
|         return response_dict
 | ||
| 
 | ||
|     def process_response_dict(self, response_dict, **kwargs):
 | ||
|         """
 | ||
|         Preprocess the response
 | ||
| 
 | ||
|         Args:
 | ||
|             response_dict (Dict): response for engine, contain ids fields
 | ||
| 
 | ||
|         Returns:
 | ||
|             Dict: response contain text fields
 | ||
|         """
 | ||
|         enable_thinking = kwargs.pop("enable_thinking", True)
 | ||
|         if enable_thinking is None:
 | ||
|             enable_thinking = True
 | ||
|         stream = kwargs.get("stream", True)
 | ||
|         if stream:
 | ||
|             return self.process_response_dict_streaming(response_dict, enable_thinking=enable_thinking, **kwargs)
 | ||
|         else:
 | ||
|             return self.process_response_dict_normal(
 | ||
|                 response_dict=response_dict,
 | ||
|                 enable_thinking=enable_thinking,
 | ||
|                 **kwargs,
 | ||
|             )
 | ||
| 
 | ||
|     def text2ids(self, text, max_model_len):
 | ||
|         """
 | ||
|         text to token ids
 | ||
| 
 | ||
|         Args:
 | ||
|             text (str): text
 | ||
| 
 | ||
|         Returns:
 | ||
|             List[int]: token ids list
 | ||
|         """
 | ||
|         if self.use_hf_tokenizer:
 | ||
|             tokens = self.tokenizer(
 | ||
|                 text,
 | ||
|                 return_tensors="np",
 | ||
|                 padding=True,
 | ||
|                 truncation=True,
 | ||
|             )
 | ||
|         else:
 | ||
|             text = [text] if isinstance(text, str) else text
 | ||
| 
 | ||
|             tokens = self.tokenizer(
 | ||
|                 text,
 | ||
|                 return_tensors="np",
 | ||
|                 padding=True,
 | ||
|                 truncation=True,
 | ||
|                 max_length=max_model_len,
 | ||
|                 add_special_tokens=False,
 | ||
|             )
 | ||
| 
 | ||
|         return tokens["input_ids"][0]
 | ||
| 
 | ||
|     def messages2ids(self, request):
 | ||
|         """
 | ||
|         Convert multi-turn messages into ID sequences.
 | ||
| 
 | ||
|         Args:
 | ||
|             messages (List[List[Dict[str, Any]]]): multi-turn messages.
 | ||
| 
 | ||
|         Returns:
 | ||
|             List[int]: ID sequences
 | ||
|         """
 | ||
| 
 | ||
|         spliced_message = self.tokenizer.apply_chat_template(
 | ||
|             request,
 | ||
|             tokenize=False,
 | ||
|             split_special_tokens=False,
 | ||
|             add_special_tokens=False,
 | ||
|             return_tensors="pd",
 | ||
|         )
 | ||
|         req_id = None
 | ||
|         tokens = self.tokenizer.tokenize(spliced_message)
 | ||
|         if isinstance(request, dict):
 | ||
|             req_id = request.get("request_id", None)
 | ||
|         token_ids = self.tokenizer.convert_tokens_to_ids(tokens)
 | ||
|         data_processor_logger.info(f"req_id:{req_id}, tokens:{tokens}, token_ids: {token_ids}")
 | ||
|         return token_ids
 | ||
| 
 | ||
|     def ids2tokens(self, token_id, task_id):
 | ||
|         """
 | ||
|         token ids to strings
 | ||
| 
 | ||
|         Args:
 | ||
|             token_ids (List[int]): token ids
 | ||
|                         task_id (str): task id
 | ||
| 
 | ||
|         Returns:
 | ||
|             List[str]: strings
 | ||
|         """
 | ||
|         if self.use_hf_tokenizer:
 | ||
|             if task_id not in self.decode_status:
 | ||
|                 # history token ids & history token strings & befer decode str
 | ||
|                 self.decode_status[task_id] = [[], [], ""]
 | ||
| 
 | ||
|             previous_token_ids = self.decode_status[task_id][0]
 | ||
|             decode_str = self.tokenizer.batch_decode(
 | ||
|                 [previous_token_ids + token_id],
 | ||
|                 skip_special_tokens=True,
 | ||
|                 clean_up_tokenization_spaces=False,
 | ||
|             )
 | ||
|             if isinstance(decode_str, list) and len(decode_str):
 | ||
|                 new_str = decode_str[0].replace(self.decode_status[task_id][2], "", 1)
 | ||
|                 self.decode_status[task_id][1].append(new_str)
 | ||
|                 self.decode_status[task_id][2] = decode_str[0]
 | ||
|             else:
 | ||
|                 new_str = ""
 | ||
|             self.decode_status[task_id][0] += token_id
 | ||
|             return new_str
 | ||
|         else:
 | ||
|             if task_id not in self.decode_status:
 | ||
|                 # prefix offset & read offset & history token ids & history token strings
 | ||
|                 self.decode_status[task_id] = [0, 0, [], ""]
 | ||
| 
 | ||
|             prefix_offset = self.decode_status[task_id][0]
 | ||
|             read_offset = self.decode_status[task_id][1]
 | ||
|             previous_token_ids = self.decode_status[task_id][2]
 | ||
|             previous_texts = self.decode_status[task_id][3]
 | ||
|             decode_str, prefix_offset, read_offset = self.tokenizer.decode_token(
 | ||
|                 previous_token_ids + token_id, prefix_offset, read_offset
 | ||
|             )
 | ||
|             self.decode_status[task_id][0] = prefix_offset
 | ||
|             self.decode_status[task_id][1] = read_offset
 | ||
|             self.decode_status[task_id][2] += token_id
 | ||
|             self.decode_status[task_id][3] += decode_str
 | ||
| 
 | ||
|             return decode_str, previous_token_ids, previous_texts
 | ||
| 
 | ||
|     def _load_tokenizer(self):
 | ||
|         """
 | ||
|         load tokenizer
 | ||
| 
 | ||
|         Returns:
 | ||
|             tokenizer (AutoTokenizer)
 | ||
|         """
 | ||
|         if self.use_hf_tokenizer:
 | ||
|             from transformers import AutoTokenizer
 | ||
| 
 | ||
|             return AutoTokenizer.from_pretrained(self.model_name_or_path, use_fast=False)
 | ||
|         else:
 | ||
|             from paddleformers.transformers import AutoTokenizer
 | ||
| 
 | ||
|             return AutoTokenizer.from_pretrained(self.model_name_or_path, padding_side="left", use_fast=True)
 | ||
| 
 | ||
|     def clear_request_status(self, task_id):
 | ||
|         """
 | ||
|         clear request status
 | ||
| 
 | ||
|         Args:
 | ||
|             task_id (str): task id
 | ||
| 
 | ||
|         Returns:
 | ||
|             results_all (str): all token strings
 | ||
|         """
 | ||
|         results_all = ""
 | ||
|         if task_id in self.decode_status:
 | ||
|             if self.use_hf_tokenizer:
 | ||
|                 results_all = self.decode_status[task_id][2]
 | ||
|             else:
 | ||
|                 results_all = "".join(self.decode_status[task_id][3])
 | ||
|             del self.decode_status[task_id]
 | ||
|         return results_all
 | ||
| 
 | ||
|     def get_pad_id(self):
 | ||
|         """
 | ||
|         get pad_token_id, if not pad_token_id, use eos_token
 | ||
| 
 | ||
|         Returns:
 | ||
|             int: pad_token_id
 | ||
|         """
 | ||
|         if isinstance(self.tokenizer, (LlamaTokenizer, Llama3Tokenizer)) and not self.tokenizer.pad_token_id:
 | ||
|             return self.tokenizer.eos_token
 | ||
|         return self.tokenizer.pad_token_id
 | ||
| 
 | ||
|     def pad_batch_data(
 | ||
|         self,
 | ||
|         insts,
 | ||
|         pad_id=0,
 | ||
|         return_seq_len=False,
 | ||
|         return_array=True,
 | ||
|         pad_style="right",
 | ||
|     ):
 | ||
|         """Pad the instances to the max sequence length in batch."""
 | ||
|         if len(insts) == 0:
 | ||
|             padded_insts = np.array([[]], dtype=np.int64) if return_array else [[]]
 | ||
|             if return_seq_len:
 | ||
|                 seq_len = np.array([], dtype=np.int64) if return_array else []
 | ||
|                 return padded_insts, seq_len
 | ||
|             return padded_insts
 | ||
| 
 | ||
|         max_len = max(map(len, insts))
 | ||
|         if pad_style == "left":
 | ||
|             padded_insts = [[pad_id] * (max_len - len(inst)) + list(inst) for inst in insts]
 | ||
|         else:
 | ||
|             padded_insts = [list(inst) + [pad_id] * (max_len - len(inst)) for inst in insts]
 | ||
|         if return_array:
 | ||
|             padded_insts = np.array(padded_insts, dtype=np.int64).reshape([-1, max_len])
 | ||
| 
 | ||
|         if return_seq_len:
 | ||
|             seq_len = [len(inst) for inst in insts]
 | ||
|             if return_array:
 | ||
|                 seq_len = np.array(seq_len, dtype=np.int64).reshape(-1, 1)
 | ||
|             return padded_insts, seq_len
 | ||
|         return padded_insts
 | ||
| 
 | ||
|     def update_stop_seq(self, stop_sequences):
 | ||
|         """
 | ||
|         Update stop sequences from request.
 | ||
|         """
 | ||
|         stop_seqs = []
 | ||
|         for seq in stop_sequences:
 | ||
|             if seq != self.tokenizer.eos_token_id:
 | ||
|                 stop_seqs.append(self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(seq)))
 | ||
|         stop_seqs, stop_seqs_len = self.pad_batch_data(stop_seqs, pad_id=-1, return_seq_len=True, return_array=False)
 | ||
|         data_processor_logger.debug(f"processed stop_seqs: {stop_seqs}, {stop_seqs_len}")
 | ||
|         return stop_seqs, stop_seqs_len
 | 
