Files
FastDeploy/fastdeploy/backends/poros/poros_backend.h
Jason 0c292c0766 [Other] Seperate option from backends (#1048)
* Seperate option from backends

* Seperate option from backends

* Seperate option from backends

* Seperate option from backends
2023-01-04 15:06:55 +08:00

86 lines
2.9 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "fastdeploy/backends/backend.h"
#include "fastdeploy/backends/poros/option.h"
#include "fastdeploy/backends/poros/common/compile.h"
#include "fastdeploy/backends/poros/common/poros_module.h"
namespace fastdeploy {
// Convert data type from fastdeploy to poros
at::ScalarType GetPorosDtype(const FDDataType& fd_dtype);
// Convert data type from poros to fastdeploy
FDDataType GetFdDtype(const at::ScalarType& dtype);
// at::ScalarType to std::string for FDERROR
std::string AtType2String(const at::ScalarType& dtype);
// Create at::Tensor
// is_backend_cuda specify if Poros use GPU Device
// While is_backend_cuda = true, and tensor.device = Device::GPU
at::Tensor CreatePorosValue(FDTensor& tensor, bool is_backend_cuda = false);
// Copy memory data from at::Tensor to fastdeploy::FDTensor
void CopyTensorToCpu(const at::Tensor& tensor, FDTensor* fd_tensor,
bool is_backend_cuda = false);
class PorosBackend : public BaseBackend {
public:
PorosBackend() {}
virtual ~PorosBackend() = default;
void BuildOption(const PorosBackendOption& option);
bool
InitFromTorchScript(const std::string& model_file,
const PorosBackendOption& option = PorosBackendOption());
bool InitFromPoros(const std::string& model_file,
const PorosBackendOption& option = PorosBackendOption());
bool Compile(const std::string& model_file,
std::vector<std::vector<FDTensor>>& prewarm_tensors,
const PorosBackendOption& option = PorosBackendOption());
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs,
bool copy_to_fd = true) override;
int NumInputs() const { return _numinputs; }
int NumOutputs() const { return _numoutputs; }
TensorInfo GetInputInfo(int index) override;
TensorInfo GetOutputInfo(int index) override;
std::vector<TensorInfo> GetInputInfos() override;
std::vector<TensorInfo> GetOutputInfos() override;
private:
baidu::mirana::poros::PorosOptions _options;
std::unique_ptr<baidu::mirana::poros::PorosModule> _poros_module;
std::vector<std::vector<c10::IValue>> _prewarm_datas;
int _numinputs = 1;
int _numoutputs = 1;
};
} // namespace fastdeploy