mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2025  PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License"
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddleformers.utils.log import logger
 | |
| 
 | |
| from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
 | |
| from fastdeploy.model_executor.load_weight_utils import (
 | |
|     load_composite_checkpoint,
 | |
|     measure_time,
 | |
| )
 | |
| from fastdeploy.model_executor.model_loader.base_loader import BaseModelLoader
 | |
| from fastdeploy.model_executor.model_loader.utils import get_pretrain_cls
 | |
| from fastdeploy.model_executor.models.model_base import ModelRegistry
 | |
| from fastdeploy.platforms import current_platform
 | |
| 
 | |
| 
 | |
| class DefaultModelLoader(BaseModelLoader):
 | |
|     """ModelLoader that can load registered models"""
 | |
| 
 | |
|     def __init__(self, load_config: LoadConfig):
 | |
|         super().__init__(load_config)
 | |
|         logger.info("Load the model and weights using DefaultModelLoader")
 | |
| 
 | |
|     def download_model(self, model_config: ModelConfig) -> None:
 | |
|         """download_model"""
 | |
|         pass
 | |
| 
 | |
|     def clean_memory_fragments(self, state_dict: dict) -> None:
 | |
|         """clean_memory_fragments"""
 | |
|         if current_platform.is_cuda():
 | |
|             if state_dict:
 | |
|                 for k, v in state_dict.items():
 | |
|                     if isinstance(v, paddle.Tensor):
 | |
|                         v.value().get_tensor()._clear()
 | |
|             paddle.device.cuda.empty_cache()
 | |
|             paddle.device.synchronize()
 | |
| 
 | |
|     @measure_time
 | |
|     def load_weights(self, model, fd_config: FDConfig, architectures: str) -> None:
 | |
|         model_class = get_pretrain_cls(architectures)
 | |
|         state_dict = load_composite_checkpoint(
 | |
|             fd_config.model_config.model,
 | |
|             model_class,
 | |
|             fd_config,
 | |
|             return_numpy=True,
 | |
|         )
 | |
|         model.set_state_dict(state_dict)
 | |
|         self.clean_memory_fragments(state_dict)
 | |
| 
 | |
|     def load_model(self, fd_config: FDConfig) -> nn.Layer:
 | |
|         context = paddle.LazyGuard()
 | |
|         architectures = fd_config.model_config.architectures[0]
 | |
|         logger.info(f"Starting to load model {architectures}")
 | |
| 
 | |
|         if fd_config.load_config.dynamic_load_weight:
 | |
|             # register rl model
 | |
|             import fastdeploy.rl  # noqa
 | |
| 
 | |
|             architectures = architectures + "RL"
 | |
| 
 | |
|         with context:
 | |
|             model_cls = ModelRegistry.get_class(architectures)
 | |
|             model = model_cls(fd_config)
 | |
| 
 | |
|         model.eval()
 | |
| 
 | |
|         # RL model not need set_state_dict
 | |
|         if fd_config.load_config.dynamic_load_weight:
 | |
|             return model
 | |
| 
 | |
|         # TODO(gongshaotian): Now, only support safetensor
 | |
|         self.load_weights(model, fd_config, architectures)
 | |
|         return model
 | 
