mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
120 lines
4.6 KiB
C++
120 lines
4.6 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#ifdef ENABLE_VISION_VISUALIZE
|
||
|
||
#include "fastdeploy/vision/visualize/visualize.h"
|
||
#include "opencv2/highgui.hpp"
|
||
#include "opencv2/imgproc/imgproc.hpp"
|
||
|
||
namespace fastdeploy {
|
||
namespace vision {
|
||
|
||
static void RemoveSmallConnectedArea(cv::Mat* alpha_pred,
|
||
float threshold = 0.05f) {
|
||
// 移除小的联通区域和噪点 开闭合形态学处理
|
||
// 假设输入的是透明度alpha, 值域(0.,1.)
|
||
cv::Mat gray, binary;
|
||
(*alpha_pred).convertTo(gray, CV_8UC1, 255.f);
|
||
// 255 * 0.05 ~ 13
|
||
unsigned int binary_threshold = static_cast<unsigned int>(255.f * threshold);
|
||
cv::threshold(gray, binary, binary_threshold, 255, cv::THRESH_BINARY);
|
||
// morphologyEx with OPEN operation to remove noise first.
|
||
auto kernel = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3, 3),
|
||
cv::Point(-1, -1));
|
||
cv::morphologyEx(binary, binary, cv::MORPH_OPEN, kernel);
|
||
// Computationally connected domain
|
||
cv::Mat labels = cv::Mat::zeros((*alpha_pred).size(), CV_32S);
|
||
cv::Mat stats, centroids;
|
||
int num_labels =
|
||
cv::connectedComponentsWithStats(binary, labels, stats, centroids, 8, 4);
|
||
if (num_labels <= 1) {
|
||
// no noise, skip.
|
||
return;
|
||
}
|
||
// find max connected area, 0 is background
|
||
int max_connected_id = 1; // 1,2,...
|
||
int max_connected_area = stats.at<int>(max_connected_id, cv::CC_STAT_AREA);
|
||
for (int i = 1; i < num_labels; ++i) {
|
||
int tmp_connected_area = stats.at<int>(i, cv::CC_STAT_AREA);
|
||
if (tmp_connected_area > max_connected_area) {
|
||
max_connected_area = tmp_connected_area;
|
||
max_connected_id = i;
|
||
}
|
||
}
|
||
const int h = (*alpha_pred).rows;
|
||
const int w = (*alpha_pred).cols;
|
||
// remove small connected area.
|
||
for (int i = 0; i < h; ++i) {
|
||
int* label_row_ptr = labels.ptr<int>(i);
|
||
float* alpha_row_ptr = (*alpha_pred).ptr<float>(i);
|
||
for (int j = 0; j < w; ++j) {
|
||
if (label_row_ptr[j] != max_connected_id) alpha_row_ptr[j] = 0.f;
|
||
}
|
||
}
|
||
}
|
||
|
||
cv::Mat Visualize::VisMattingAlpha(const cv::Mat& im,
|
||
const MattingResult& result,
|
||
bool remove_small_connected_area) {
|
||
// 只可视化alpha,fgr(前景)本身就是一张图 不需要可视化
|
||
FDASSERT((!im.empty()), "im can't be empty!");
|
||
FDASSERT((im.channels() == 3), "Only support 3 channels mat!");
|
||
|
||
auto vis_img = im.clone();
|
||
int out_h = static_cast<int>(result.shape[0]);
|
||
int out_w = static_cast<int>(result.shape[1]);
|
||
int height = im.rows;
|
||
int width = im.cols;
|
||
// alpha to cv::Mat && 避免resize等操作修改外部数据
|
||
std::vector<float> alpha_copy;
|
||
alpha_copy.assign(result.alpha.begin(), result.alpha.end());
|
||
float* alpha_ptr = static_cast<float*>(alpha_copy.data());
|
||
cv::Mat alpha(out_h, out_w, CV_32FC1, alpha_ptr);
|
||
if (remove_small_connected_area) {
|
||
RemoveSmallConnectedArea(&alpha, 0.05f);
|
||
}
|
||
if ((out_h != height) || (out_w != width)) {
|
||
cv::resize(alpha, alpha, cv::Size(width, height));
|
||
}
|
||
|
||
if ((vis_img).type() != CV_8UC3) {
|
||
(vis_img).convertTo((vis_img), CV_8UC3);
|
||
}
|
||
|
||
uchar* vis_data = static_cast<uchar*>(vis_img.data);
|
||
uchar* im_data = static_cast<uchar*>(im.data);
|
||
float* alpha_data = reinterpret_cast<float*>(alpha.data);
|
||
|
||
for (size_t i = 0; i < height; ++i) {
|
||
for (size_t j = 0; j < width; ++j) {
|
||
float alpha_val = alpha_data[i * width + j];
|
||
vis_data[i * width * 3 + j * 3 + 0] = cv::saturate_cast<uchar>(
|
||
static_cast<float>(im_data[i * width * 3 + j * 3 + 0]) * alpha_val +
|
||
(1.f - alpha_val) * 153.f);
|
||
vis_data[i * width * 3 + j * 3 + 1] = cv::saturate_cast<uchar>(
|
||
static_cast<float>(im_data[i * width * 3 + j * 3 + 1]) * alpha_val +
|
||
(1.f - alpha_val) * 255.f);
|
||
vis_data[i * width * 3 + j * 3 + 2] = cv::saturate_cast<uchar>(
|
||
static_cast<float>(im_data[i * width * 3 + j * 3 + 2]) * alpha_val +
|
||
(1.f - alpha_val) * 120.f);
|
||
}
|
||
}
|
||
return vis_img;
|
||
}
|
||
|
||
} // namespace vision
|
||
} // namespace fastdeploy
|
||
#endif
|