Files
FastDeploy/csrc/fastdeploy/function/transpose.cc
Jack Zhou 391d66381f Remove eigen compliation option (#161)
Remove eigen option
2022-08-26 11:20:52 +08:00

118 lines
4.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/transpose.h"
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/utils/utils.h"
namespace fastdeploy {
template <typename T>
struct TransposeNormalKernel {
void operator()(const FDTensor& in, FDTensor* out,
const std::vector<int64_t>& axis) {
const int rank = axis.size();
auto in_stride = GetStride(in.shape);
auto out_stride = GetStride(out->shape);
const T* in_ptr = reinterpret_cast<const T*>(in.Data());
T* out_ptr = reinterpret_cast<T*>(out->Data());
auto transpose_helper = [&](int64_t beg, int64_t end) {
for (int64_t out_idx = beg; out_idx < end; ++out_idx) {
int64_t in_idx = 0;
int64_t tmp_idx = out_idx;
// calculate the input index
for (int i = 0; i < rank; ++i) {
const int64_t coordinate = tmp_idx / out_stride[i];
tmp_idx -= coordinate * out_stride[i];
in_idx += coordinate * in_stride[axis[i]];
}
out_ptr[out_idx] = in_ptr[in_idx];
}
};
transpose_helper(0, out->Numel());
}
};
template <typename T, int Rank>
struct TransposeKernelImpl {
void operator()(const FDTensor& in, FDTensor* out,
const std::vector<int64_t>& axis) {
Eigen::array<int, Rank> permute;
for (int i = 0; i < Rank; i++) {
permute[i] = axis[i];
}
auto& place = *EigenDeviceWrapper::GetInstance()->GetDevice();
auto eigen_in = EigenTensor<T, Rank>::From(in);
auto eigen_out = EigenTensor<T, Rank>::From(*out);
eigen_out.device(place) = eigen_in.shuffle(permute);
}
};
template <typename T>
void TransposeKernel(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& axis) {
int rank = axis.size();
switch (rank) {
case 1:
TransposeKernelImpl<T, 1> trans1;
trans1(x, out, axis);
break;
case 2:
TransposeKernelImpl<T, 2> trans2;
trans2(x, out, axis);
break;
case 3:
TransposeKernelImpl<T, 3> trans3;
trans3(x, out, axis);
break;
case 4:
TransposeKernelImpl<T, 4> trans4;
trans4(x, out, axis);
break;
default:
// for rank >= 4 situation
TransposeNormalKernel<T> trans_normal;
trans_normal(x, out, axis);
}
}
void Transpose(const FDTensor& x, FDTensor* out,
const std::vector<int64_t>& dims) {
size_t dims_size = dims.size();
FDASSERT(dims_size == x.shape.size(),
"The input tensor's dimension should be equal to the dims's size. "
"Expect dims size is %lu, but receive %lu.",
x.shape.size(), dims_size);
std::vector<int> count(dims_size, 0);
for (size_t i = 0; i < dims_size; i++) {
FDASSERT(dims[i] >= 0,
"The dims should be greater than or equal to 0, but receive %lld.",
dims[i]);
FDASSERT(dims[i] < static_cast<int>(dims_size) && ++count[dims[i]] == 1,
"Each element of Attribute axis should be a unique value range "
"from 0 to (dims - 1), where the dims is the axis's size, unique "
"value means this axis value can appear only once. ");
}
std::vector<int64_t> out_dims(dims_size);
for (size_t i = 0; i < dims_size; i++) {
out_dims[i] = x.shape[dims[i]];
}
out->Allocate(out_dims, x.dtype);
FD_VISIT_ALL_TYPES(x.dtype, "TransposeKernel",
([&] { TransposeKernel<data_t>(x, out, dims); }));
}
} // namespace fastdeploy