Files
FastDeploy/tests/quantization/test_tensor_wise_fp8.py
fmiao2372 404cf0ece4 [Intel HPU] enable tensor_wise_fp8 (#5324)
* [Intel HPU] enable tensor_wise_fp8

* update code based on comments

* fix code style issue

* fix bug about RP 5138

* mv kv_cache modifications to HPU backend

* fix FP8 Precision Issues

* fix FP8 Precision Issues

* Add quantization UT

---------

Co-authored-by: yanfeich <yanfei.cheng@intel.com>
Co-authored-by: YuBaoku <49938469+EmmonsCurse@users.noreply.github.com>
2025-12-17 16:45:03 +08:00

155 lines
5.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import unittest
from unittest.mock import MagicMock, patch
import paddle
from fastdeploy.model_executor.layers.quantization.tensor_wise_fp8 import (
TensorWiseFP8Config,
TensorWiseFP8LinearMethod,
)
from fastdeploy.platforms import current_platform
# Dummy classes for test
class DummyLayer:
"""Dummy linear layer for test purposes"""
def __init__(self):
self.weight_shape = [4, 8]
self.weight_key = "weight"
self.weight_scale_key = "weight_scale"
self.act_scale_key = "act_scale"
self.weight_dtype = "float32"
self.weight = MagicMock() # Mock weight to avoid dtype copy errors
def create_parameter(self, shape, dtype, is_bias=False, default_initializer=None):
"""Mock parameter creation"""
return MagicMock()
class DummyFusedMoE:
"""Dummy FusedMoE class for patching"""
pass
class TestTensorWiseFP8Config(unittest.TestCase):
"""Test suite for TensorWiseFP8Config"""
def test_get_quant_method_linear(self):
"""Verify linear layer returns TensorWiseFP8LinearMethod"""
cfg = TensorWiseFP8Config()
layer = DummyLayer()
method = cfg.get_quant_method(layer)
self.assertIsInstance(method, TensorWiseFP8LinearMethod)
def test_get_quant_method_moe(self):
"""Verify FusedMoE layer returns valid quant method"""
cfg = TensorWiseFP8Config()
layer = DummyFusedMoE()
with patch("fastdeploy.model_executor.layers.moe.FusedMoE", DummyFusedMoE):
method = cfg.get_quant_method(layer)
self.assertTrue(hasattr(method, "quant_config"))
class TestTensorWiseFP8LinearMethod(unittest.TestCase):
"""Test suite for TensorWiseFP8LinearMethod"""
def setUp(self):
"""Initialize test fixtures"""
self.layer = DummyLayer()
self.method = TensorWiseFP8LinearMethod(TensorWiseFP8Config())
# Initialize scales to avoid apply errors
self.method.act_scale = 1.0
self.method.total_scale = 1.0
def test_create_weights(self):
"""Verify weight dtype is set to float8_e4m3fn"""
self.method.create_weights(self.layer)
self.assertEqual(self.layer.weight_dtype, "float8_e4m3fn")
def test_process_prequanted_weights(self):
"""Verify prequantized weights and scales are processed correctly"""
self.layer.weight.copy_ = MagicMock()
state_dict = {
"weight": paddle.randn([8, 4]),
"weight_scale": paddle.to_tensor([0.5], dtype="float32"),
"act_scale": paddle.to_tensor([2.0], dtype="float32"),
}
self.method.process_prequanted_weights(self.layer, state_dict)
self.assertAlmostEqual(self.method.act_scale, 2.0)
self.assertAlmostEqual(self.method.total_scale, 1.0)
self.layer.weight.copy_.assert_called_once()
@unittest.skipIf(not hasattr(current_platform, "is_gpu") or not current_platform.is_gpu(), "No GPU, skip test")
@patch("fastdeploy.model_executor.ops.gpu.fused_hadamard_quant_fp8", autospec=True)
@patch("fastdeploy.model_executor.ops.gpu.cutlass_fp8_fp8_half_gemm_fused", autospec=True)
def test_apply(self, mock_gemm, mock_quant):
"""Verify apply method executes with mocked ops"""
mock_quant.side_effect = lambda x, scale: x
mock_gemm.side_effect = lambda x, w, **kwargs: x
x = paddle.randn([4, 8])
out = self.method.apply(self.layer, x)
self.assertTrue((out == x).all())
@unittest.skipIf(
not hasattr(current_platform, "is_intel_hpu") or not current_platform.is_intel_hpu(), "No Intel HPU, skip test"
)
class TestHPUTensorWiseFP8LinearMethod(unittest.TestCase):
"""Test suite for TensorWiseFP8LinearMethod"""
def setUp(self):
from fastdeploy.model_executor.layers.backends import (
HpuTensorWiseFP8LinearMethod,
)
"""Initialize test fixtures"""
self.layer = DummyLayer()
self.method = HpuTensorWiseFP8LinearMethod(TensorWiseFP8Config())
def test_create_weights(self):
"""Verify weight dtype is set to float8_e4m3fn"""
self.method.create_weights(self.layer)
self.assertEqual(self.layer.weight_dtype, "float8_e4m3fn")
def test_process_prequanted_weights(self):
"""Verify prequantized weights and scales are processed correctly"""
self.layer.weight_scale = MagicMock()
self.layer.act_scale = MagicMock()
self.layer.act_scale_inv = MagicMock()
self.layer.weight.copy_ = MagicMock()
self.layer.weight_scale.set_value = MagicMock()
self.layer.act_scale.set_value = MagicMock()
self.layer.act_scale_inv.set_value = MagicMock()
state_dict = {
"weight": paddle.randn([8, 4]),
"weight_scale": paddle.to_tensor([0.5], dtype="float32"),
"act_scale": paddle.to_tensor([2.0], dtype="float32"),
}
self.method.process_prequanted_weights(self.layer, state_dict)
self.layer.weight.copy_.assert_called_once()
self.layer.weight_scale.set_value.assert_called_once()
self.layer.act_scale.set_value.assert_called_once()
self.layer.act_scale_inv.set_value.assert_called_once()
if __name__ == "__main__":
unittest.main()