mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	 718698a32a
			
		
	
	718698a32a
	
	
	
		
			
			* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test * add rvm support * support rvm model * add rvm demo * fixed bugs * add rvm readme * add TRT support * add trt support * add rvm test * add EXPORT.md * rename export.md * rm poros doxyen * deal with comments * deal with comments * add rvm video_mode note Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			102 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| import pickle
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| def test_matting_rvm_cpu():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
 | |
|     input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
 | |
|     fd.download_and_decompress(model_url, ".")
 | |
|     fd.download(input_url, ".")
 | |
|     model_path = "rvm/rvm_mobilenetv3_fp32.onnx"
 | |
|     # use ORT
 | |
|     runtime_option = fd.RuntimeOption()
 | |
|     runtime_option.use_ort_backend()
 | |
|     model = fd.vision.matting.RobustVideoMatting(
 | |
|         model_path, runtime_option=runtime_option)
 | |
| 
 | |
|     cap = cv2.VideoCapture(input_url)
 | |
| 
 | |
|     frame_id = 0
 | |
|     while True:
 | |
|         _, frame = cap.read()
 | |
|         if frame is None:
 | |
|             break
 | |
|         result = model.predict(frame)
 | |
|         # compare diff
 | |
|         expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
 | |
|         result_alpha = np.array(result.alpha).reshape(1920, 1080)
 | |
|         diff = np.fabs(expect_alpha - result_alpha)
 | |
|         thres = 1e-05
 | |
|         assert diff.max(
 | |
|         ) < thres, "The label diff is %f, which is bigger than %f" % (
 | |
|             diff.max(), thres)
 | |
|         frame_id = frame_id + 1
 | |
|         cv2.waitKey(30)
 | |
|         if frame_id >= 10:
 | |
|             cap.release()
 | |
|             cv2.destroyAllWindows()
 | |
|             break
 | |
| 
 | |
| 
 | |
| def test_matting_rvm_gpu_trt():
 | |
|     model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/rvm.tgz"
 | |
|     input_url = "https://bj.bcebos.com/paddlehub/fastdeploy/video.mp4"
 | |
|     fd.download_and_decompress(model_url, ".")
 | |
|     fd.download(input_url, ".")
 | |
|     model_path = "rvm/rvm_mobilenetv3_trt.onnx"
 | |
|     # use TRT
 | |
|     runtime_option = fd.RuntimeOption()
 | |
|     runtime_option.use_gpu()
 | |
|     runtime_option.use_trt_backend()
 | |
|     runtime_option.set_trt_input_shape("src", [1, 3, 1920, 1080])
 | |
|     runtime_option.set_trt_input_shape("r1i", [1, 1, 1, 1], [1, 16, 240, 135],
 | |
|                                        [1, 16, 240, 135])
 | |
|     runtime_option.set_trt_input_shape("r2i", [1, 1, 1, 1], [1, 20, 120, 68],
 | |
|                                        [1, 20, 120, 68])
 | |
|     runtime_option.set_trt_input_shape("r3i", [1, 1, 1, 1], [1, 40, 60, 34],
 | |
|                                        [1, 40, 60, 34])
 | |
|     runtime_option.set_trt_input_shape("r4i", [1, 1, 1, 1], [1, 64, 30, 17],
 | |
|                                        [1, 64, 30, 17])
 | |
|     model = fd.vision.matting.RobustVideoMatting(
 | |
|         model_path, runtime_option=runtime_option)
 | |
| 
 | |
|     cap = cv2.VideoCapture("./video.mp4")
 | |
| 
 | |
|     frame_id = 0
 | |
|     while True:
 | |
|         _, frame = cap.read()
 | |
|         if frame is None:
 | |
|             break
 | |
|         result = model.predict(frame)
 | |
|         # compare diff
 | |
|         expect_alpha = np.load("rvm/result_alpha_" + str(frame_id) + ".npy")
 | |
|         result_alpha = np.array(result.alpha).reshape(1920, 1080)
 | |
|         diff = np.fabs(expect_alpha - result_alpha)
 | |
|         thres = 1e-04
 | |
|         assert diff.max(
 | |
|         ) < thres, "The label diff is %f, which is bigger than %f" % (
 | |
|             diff.max(), thres)
 | |
|         frame_id = frame_id + 1
 | |
|         cv2.waitKey(30)
 | |
|         if frame_id >= 10:
 | |
|             cap.release()
 | |
|             cv2.destroyAllWindows()
 | |
|             break
 |