Files
FastDeploy/fastdeploy/runtime/runtime.cc
Jason d7a65e5c70 [Other] Upgrade runtime module (#1068)
* Upgrade runtime module

* Update option.h

* Fix build error

* Move enumerates

* little modification

* little modification

* little modification:

* Remove some useless flags
2023-01-06 13:44:05 +08:00

493 lines
20 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/runtime/runtime.h"
#include "fastdeploy/utils/unique_ptr.h"
#include "fastdeploy/utils/utils.h"
#ifdef ENABLE_ORT_BACKEND
#include "fastdeploy/backends/ort/ort_backend.h"
#endif
#ifdef ENABLE_TRT_BACKEND
#include "fastdeploy/backends/tensorrt/trt_backend.h"
#endif
#ifdef ENABLE_PADDLE_BACKEND
#include "fastdeploy/backends/paddle/paddle_backend.h"
#endif
#ifdef ENABLE_POROS_BACKEND
#include "fastdeploy/backends/poros/poros_backend.h"
#endif
#ifdef ENABLE_OPENVINO_BACKEND
#include "fastdeploy/backends/openvino/ov_backend.h"
#endif
#ifdef ENABLE_LITE_BACKEND
#include "fastdeploy/backends/lite/lite_backend.h"
#endif
#ifdef ENABLE_RKNPU2_BACKEND
#include "fastdeploy/backends/rknpu2/rknpu2_backend.h"
#endif
#ifdef ENABLE_SOPHGO_BACKEND
#include "fastdeploy/backends/sophgo/sophgo_backend.h"
#endif
namespace fastdeploy {
bool Runtime::Init(const RuntimeOption& _option) {
option = _option;
// Choose default backend by model format
if (option.backend == Backend::UNKNOWN) {
auto iter = s_default_backends_cfg.find(option.model_format);
if (iter == s_default_backends_cfg.end()) {
FDERROR << "Cannot found a default backend for model format: "
<< option.model_format
<< ", please define the inference backend in RuntimeOption."
<< std::endl;
return false;
}
for (const auto& b : iter->second) {
if (IsBackendAvailable(b)) {
option.backend = b;
FDINFO << "FastDeploy will choose " << b << " to inference this model."
<< std::endl;
}
}
if (option.backend == Backend::UNKNOWN) {
FDERROR << "Cannot found available backends for model format: "
<< option.model_format << "." << std::endl;
return false;
}
}
if (option.backend == Backend::ORT) {
FDASSERT(option.device == Device::CPU || option.device == Device::GPU,
"Backend::ORT only supports Device::CPU/Device::GPU.");
CreateOrtBackend();
FDINFO << "Runtime initialized with Backend::ORT in " << option.device
<< "." << std::endl;
} else if (option.backend == Backend::TRT) {
FDASSERT(option.device == Device::GPU,
"Backend::TRT only supports Device::GPU.");
CreateTrtBackend();
FDINFO << "Runtime initialized with Backend::TRT in " << option.device
<< "." << std::endl;
} else if (option.backend == Backend::PDINFER) {
FDASSERT(
option.device == Device::CPU || option.device == Device::GPU ||
option.device == Device::IPU,
"Backend::PDINFER only supports Device::CPU/Device::GPU/Device::IPU.");
FDASSERT(
option.model_format == ModelFormat::PADDLE,
"Backend::PDINFER only supports model format of ModelFormat::PADDLE.");
CreatePaddleBackend();
FDINFO << "Runtime initialized with Backend::PDINFER in " << option.device
<< "." << std::endl;
} else if (option.backend == Backend::POROS) {
FDASSERT(option.device == Device::CPU || option.device == Device::GPU,
"Backend::POROS only supports Device::CPU/Device::GPU.");
FDASSERT(option.model_format == ModelFormat::TORCHSCRIPT,
"Backend::POROS only supports model format of "
"ModelFormat::TORCHSCRIPT.");
FDINFO << "Runtime initialized with Backend::POROS in " << option.device
<< "." << std::endl;
return true;
} else if (option.backend == Backend::OPENVINO) {
FDASSERT(option.device == Device::CPU,
"Backend::OPENVINO only supports Device::CPU");
CreateOpenVINOBackend();
FDINFO << "Runtime initialized with Backend::OPENVINO in " << option.device
<< "." << std::endl;
} else if (option.backend == Backend::LITE) {
FDASSERT(option.device == Device::CPU || option.device == Device::TIMVX ||
option.device == Device::KUNLUNXIN ||
option.device == Device::ASCEND,
"Backend::LITE only supports "
"Device::CPU/Device::TIMVX/Device::KUNLUNXIN.");
CreateLiteBackend();
FDINFO << "Runtime initialized with Backend::LITE in " << option.device
<< "." << std::endl;
} else if (option.backend == Backend::RKNPU2) {
FDASSERT(option.device == Device::RKNPU,
"Backend::RKNPU2 only supports Device::RKNPU2");
CreateRKNPU2Backend();
FDINFO << "Runtime initialized with Backend::RKNPU2 in " << option.device
<< "." << std::endl;
} else if (option.backend == Backend::SOPHGOTPU) {
FDASSERT(option.device == Device::SOPHGOTPUD,
"Backend::SOPHGO only supports Device::SOPHGO");
CreateSophgoNPUBackend();
FDINFO << "Runtime initialized with Backend::SOPHGO in " << option.device
<< "." << std::endl;
} else {
FDERROR << "Runtime only support "
"Backend::ORT/Backend::TRT/Backend::PDINFER/Backend::POROS as "
"backend now."
<< std::endl;
return false;
}
return true;
}
TensorInfo Runtime::GetInputInfo(int index) {
return backend_->GetInputInfo(index);
}
TensorInfo Runtime::GetOutputInfo(int index) {
return backend_->GetOutputInfo(index);
}
std::vector<TensorInfo> Runtime::GetInputInfos() {
return backend_->GetInputInfos();
}
std::vector<TensorInfo> Runtime::GetOutputInfos() {
return backend_->GetOutputInfos();
}
bool Runtime::Infer(std::vector<FDTensor>& input_tensors,
std::vector<FDTensor>* output_tensors) {
for (auto& tensor : input_tensors) {
FDASSERT(tensor.device_id < 0 || tensor.device_id == option.device_id,
"Device id of input tensor(%d) and runtime(%d) are not same.",
tensor.device_id, option.device_id);
}
return backend_->Infer(input_tensors, output_tensors);
}
bool Runtime::Infer() {
bool result = backend_->Infer(input_tensors_, &output_tensors_, false);
for (auto& tensor : output_tensors_) {
tensor.device_id = option.device_id;
}
return result;
}
void Runtime::BindInputTensor(const std::string& name, FDTensor& input) {
bool is_exist = false;
for (auto& t : input_tensors_) {
if (t.name == name) {
is_exist = true;
t.SetExternalData(input.shape, input.dtype, input.MutableData(),
input.device, input.device_id);
break;
}
}
if (!is_exist) {
FDTensor new_tensor(name);
new_tensor.SetExternalData(input.shape, input.dtype, input.MutableData(),
input.device, input.device_id);
input_tensors_.emplace_back(std::move(new_tensor));
}
}
FDTensor* Runtime::GetOutputTensor(const std::string& name) {
for (auto& t : output_tensors_) {
if (t.name == name) {
return &t;
}
}
FDWARNING << "The output name [" << name << "] don't exist." << std::endl;
return nullptr;
}
void Runtime::CreatePaddleBackend() {
#ifdef ENABLE_PADDLE_BACKEND
auto pd_option = PaddleBackendOption();
pd_option.model_file = option.model_file;
pd_option.params_file = option.params_file;
pd_option.enable_mkldnn = option.pd_enable_mkldnn;
pd_option.enable_log_info = option.pd_enable_log_info;
pd_option.mkldnn_cache_size = option.pd_mkldnn_cache_size;
pd_option.use_gpu = (option.device == Device::GPU) ? true : false;
pd_option.use_ipu = (option.device == Device::IPU) ? true : false;
pd_option.gpu_id = option.device_id;
pd_option.delete_pass_names = option.pd_delete_pass_names;
pd_option.cpu_thread_num = option.cpu_thread_num;
pd_option.enable_pinned_memory = option.enable_pinned_memory;
pd_option.external_stream_ = option.external_stream_;
pd_option.model_from_memory_ = option.model_from_memory_;
if (pd_option.model_from_memory_) {
pd_option.model_buffer_ = option.model_buffer_;
pd_option.params_buffer_ = option.params_buffer_;
pd_option.model_buffer_size_ = option.model_buffer_size_;
pd_option.params_buffer_size_ = option.params_buffer_size_;
}
#ifdef ENABLE_TRT_BACKEND
if (pd_option.use_gpu && option.pd_enable_trt) {
pd_option.enable_trt = true;
pd_option.collect_shape = option.pd_collect_shape;
auto trt_option = TrtBackendOption();
trt_option.gpu_id = option.device_id;
trt_option.enable_fp16 = option.trt_enable_fp16;
trt_option.max_batch_size = option.trt_max_batch_size;
trt_option.max_workspace_size = option.trt_max_workspace_size;
trt_option.max_shape = option.trt_max_shape;
trt_option.min_shape = option.trt_min_shape;
trt_option.opt_shape = option.trt_opt_shape;
trt_option.serialize_file = option.trt_serialize_file;
trt_option.enable_pinned_memory = option.enable_pinned_memory;
pd_option.trt_option = trt_option;
pd_option.trt_disabled_ops_ = option.trt_disabled_ops_;
}
#endif
#ifdef WITH_IPU
if (pd_option.use_ipu) {
auto ipu_option = IpuOption();
ipu_option.ipu_device_num = option.ipu_device_num;
ipu_option.ipu_micro_batch_size = option.ipu_micro_batch_size;
ipu_option.ipu_enable_pipelining = option.ipu_enable_pipelining;
ipu_option.ipu_batches_per_step = option.ipu_batches_per_step;
ipu_option.ipu_enable_fp16 = option.ipu_enable_fp16;
ipu_option.ipu_replica_num = option.ipu_replica_num;
ipu_option.ipu_available_memory_proportion =
option.ipu_available_memory_proportion;
ipu_option.ipu_enable_half_partial = option.ipu_enable_half_partial;
pd_option.ipu_option = ipu_option;
}
#endif
FDASSERT(option.model_format == ModelFormat::PADDLE,
"PaddleBackend only support model format of ModelFormat::PADDLE.");
backend_ = utils::make_unique<PaddleBackend>();
auto casted_backend = dynamic_cast<PaddleBackend*>(backend_.get());
if (pd_option.model_from_memory_) {
FDASSERT(casted_backend->InitFromPaddle(option.model_buffer_,
option.params_buffer_, pd_option),
"Load model from Paddle failed while initliazing PaddleBackend.");
} else {
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
option.params_file, pd_option),
"Load model from Paddle failed while initliazing PaddleBackend.");
}
#else
FDASSERT(false,
"PaddleBackend is not available, please compiled with "
"ENABLE_PADDLE_BACKEND=ON.");
#endif
}
void Runtime::CreateOpenVINOBackend() {
#ifdef ENABLE_OPENVINO_BACKEND
auto ov_option = OpenVINOBackendOption();
ov_option.cpu_thread_num = option.cpu_thread_num;
ov_option.device = option.openvino_device;
ov_option.shape_infos = option.ov_shape_infos;
ov_option.num_streams = option.ov_num_streams;
for (const auto& op : option.ov_cpu_operators) {
ov_option.cpu_operators.insert(op);
}
FDASSERT(option.model_format == ModelFormat::PADDLE ||
option.model_format == ModelFormat::ONNX,
"OpenVINOBackend only support model format of ModelFormat::PADDLE / "
"ModelFormat::ONNX.");
backend_ = utils::make_unique<OpenVINOBackend>();
auto casted_backend = dynamic_cast<OpenVINOBackend*>(backend_.get());
if (option.model_format == ModelFormat::ONNX) {
FDASSERT(casted_backend->InitFromOnnx(option.model_file, ov_option),
"Load model from ONNX failed while initliazing OrtBackend.");
} else {
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
option.params_file, ov_option),
"Load model from Paddle failed while initliazing OrtBackend.");
}
#else
FDASSERT(false,
"OpenVINOBackend is not available, please compiled with "
"ENABLE_OPENVINO_BACKEND=ON.");
#endif
}
void Runtime::CreateOrtBackend() {
#ifdef ENABLE_ORT_BACKEND
auto ort_option = OrtBackendOption();
ort_option.graph_optimization_level = option.ort_graph_opt_level;
ort_option.intra_op_num_threads = option.cpu_thread_num;
ort_option.inter_op_num_threads = option.ort_inter_op_num_threads;
ort_option.execution_mode = option.ort_execution_mode;
ort_option.use_gpu = (option.device == Device::GPU) ? true : false;
ort_option.gpu_id = option.device_id;
ort_option.external_stream_ = option.external_stream_;
FDASSERT(option.model_format == ModelFormat::PADDLE ||
option.model_format == ModelFormat::ONNX,
"OrtBackend only support model format of ModelFormat::PADDLE / "
"ModelFormat::ONNX.");
backend_ = utils::make_unique<OrtBackend>();
auto casted_backend = dynamic_cast<OrtBackend*>(backend_.get());
if (option.model_format == ModelFormat::ONNX) {
FDASSERT(casted_backend->InitFromOnnx(option.model_file, ort_option),
"Load model from ONNX failed while initliazing OrtBackend.");
} else {
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
option.params_file, ort_option),
"Load model from Paddle failed while initliazing OrtBackend.");
}
#else
FDASSERT(false,
"OrtBackend is not available, please compiled with "
"ENABLE_ORT_BACKEND=ON.");
#endif
}
void Runtime::CreateTrtBackend() {
#ifdef ENABLE_TRT_BACKEND
auto trt_option = TrtBackendOption();
trt_option.model_file = option.model_file;
trt_option.params_file = option.params_file;
trt_option.model_format = option.model_format;
trt_option.gpu_id = option.device_id;
trt_option.enable_fp16 = option.trt_enable_fp16;
trt_option.enable_int8 = option.trt_enable_int8;
trt_option.max_batch_size = option.trt_max_batch_size;
trt_option.max_workspace_size = option.trt_max_workspace_size;
trt_option.max_shape = option.trt_max_shape;
trt_option.min_shape = option.trt_min_shape;
trt_option.opt_shape = option.trt_opt_shape;
trt_option.serialize_file = option.trt_serialize_file;
trt_option.enable_pinned_memory = option.enable_pinned_memory;
trt_option.external_stream_ = option.external_stream_;
FDASSERT(option.model_format == ModelFormat::PADDLE ||
option.model_format == ModelFormat::ONNX,
"TrtBackend only support model format of ModelFormat::PADDLE / "
"ModelFormat::ONNX.");
backend_ = utils::make_unique<TrtBackend>();
auto casted_backend = dynamic_cast<TrtBackend*>(backend_.get());
if (option.model_format == ModelFormat::ONNX) {
FDASSERT(casted_backend->InitFromOnnx(option.model_file, trt_option),
"Load model from ONNX failed while initliazing TrtBackend.");
} else {
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
option.params_file, trt_option),
"Load model from Paddle failed while initliazing TrtBackend.");
}
#else
FDASSERT(false,
"TrtBackend is not available, please compiled with "
"ENABLE_TRT_BACKEND=ON.");
#endif
}
void Runtime::CreateLiteBackend() {
#ifdef ENABLE_LITE_BACKEND
auto lite_option = LiteBackendOption();
lite_option.threads = option.cpu_thread_num;
lite_option.enable_int8 = option.lite_enable_int8;
lite_option.enable_fp16 = option.lite_enable_fp16;
lite_option.power_mode = static_cast<int>(option.lite_power_mode);
lite_option.optimized_model_dir = option.lite_optimized_model_dir;
lite_option.nnadapter_subgraph_partition_config_path =
option.lite_nnadapter_subgraph_partition_config_path;
lite_option.nnadapter_subgraph_partition_config_buffer =
option.lite_nnadapter_subgraph_partition_config_buffer;
lite_option.nnadapter_device_names = option.lite_nnadapter_device_names;
lite_option.nnadapter_context_properties =
option.lite_nnadapter_context_properties;
lite_option.nnadapter_model_cache_dir = option.lite_nnadapter_model_cache_dir;
lite_option.nnadapter_dynamic_shape_info =
option.lite_nnadapter_dynamic_shape_info;
lite_option.nnadapter_mixed_precision_quantization_config_path =
option.lite_nnadapter_mixed_precision_quantization_config_path;
lite_option.enable_timvx = option.enable_timvx;
lite_option.enable_ascend = option.enable_ascend;
lite_option.enable_kunlunxin = option.enable_kunlunxin;
lite_option.device_id = option.device_id;
lite_option.kunlunxin_l3_workspace_size = option.kunlunxin_l3_workspace_size;
lite_option.kunlunxin_locked = option.kunlunxin_locked;
lite_option.kunlunxin_autotune = option.kunlunxin_autotune;
lite_option.kunlunxin_autotune_file = option.kunlunxin_autotune_file;
lite_option.kunlunxin_precision = option.kunlunxin_precision;
lite_option.kunlunxin_adaptive_seqlen = option.kunlunxin_adaptive_seqlen;
lite_option.kunlunxin_enable_multi_stream =
option.kunlunxin_enable_multi_stream;
FDASSERT(option.model_format == ModelFormat::PADDLE,
"LiteBackend only support model format of ModelFormat::PADDLE");
backend_ = utils::make_unique<LiteBackend>();
auto casted_backend = dynamic_cast<LiteBackend*>(backend_.get());
FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file,
lite_option),
"Load model from nb file failed while initializing LiteBackend.");
#else
FDASSERT(false,
"LiteBackend is not available, please compiled with "
"ENABLE_LITE_BACKEND=ON.");
#endif
}
void Runtime::CreateRKNPU2Backend() {
#ifdef ENABLE_RKNPU2_BACKEND
auto rknpu2_option = RKNPU2BackendOption();
rknpu2_option.cpu_name = option.rknpu2_cpu_name_;
rknpu2_option.core_mask = option.rknpu2_core_mask_;
FDASSERT(option.model_format == ModelFormat::RKNN,
"RKNPU2Backend only support model format of ModelFormat::RKNN");
backend_ = utils::make_unique<RKNPU2Backend>();
auto casted_backend = dynamic_cast<RKNPU2Backend*>(backend_.get());
FDASSERT(casted_backend->InitFromRKNN(option.model_file, rknpu2_option),
"Load model from nb file failed while initializing LiteBackend.");
#else
FDASSERT(false,
"RKNPU2Backend is not available, please compiled with "
"ENABLE_RKNPU2_BACKEND=ON.");
#endif
}
void Runtime::CreateSophgoNPUBackend() {
#ifdef ENABLE_SOPHGO_BACKEND
auto sophgo_option = SophgoBackendOption();
FDASSERT(option.model_format == ModelFormat::SOPHGO,
"SophgoBackend only support model format of ModelFormat::SOPHGO");
backend_ = utils::make_unique<SophgoBackend>();
auto casted_backend = dynamic_cast<SophgoBackend*>(backend_.get());
FDASSERT(casted_backend->InitFromSophgo(option.model_file, sophgo_option),
"Load model from nb file failed while initializing LiteBackend.");
#else
FDASSERT(false,
"SophgoBackend is not available, please compiled with "
"ENABLE_SOPHGO_BACKEND=ON.");
#endif
}
Runtime* Runtime::Clone(void* stream, int device_id) {
Runtime* runtime = new Runtime();
if (option.backend != Backend::OPENVINO &&
option.backend != Backend::PDINFER && option.backend != Backend::TRT) {
runtime->Init(option);
FDWARNING << "Only OpenVINO/Paddle Inference/TensorRT support \
clone engine to reduce CPU/GPU memory usage now. For "
<< option.backend
<< ", FastDeploy will create a new engine which \
will not share memory with the current runtime."
<< std::endl;
return runtime;
}
FDINFO << "Runtime Clone with Backend:: " << option.backend << " in "
<< option.device << "." << std::endl;
runtime->option = option;
runtime->backend_ = backend_->Clone(stream, device_id);
return runtime;
}
} // namespace fastdeploy