Files
FastDeploy/fastdeploy/model_executor/models/paddleocr_vl/projector.py
Nyakku Shigure 0c66163dfd [Loader][BugFix] Fix some parameters place on CPU in PaddleOCR-VL (#5413)
* [BugFix] Fix some parameter place on CPU in PaddleOCR-VL

* clean log

* fix codestyle
2025-12-08 10:01:00 +08:00

114 lines
4.5 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import math
from typing import Optional
import paddle
import paddle.nn as nn
from fastdeploy.model_executor.utils import h2d_copy
class GELUActivation(nn.Layer):
"""
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
def __init__(self, use_gelu_python: bool = False):
super().__init__()
if use_gelu_python:
self.act = self._gelu_python
else:
self.act = nn.functional.gelu
def _gelu_python(self, input):
return input * 0.5 * (1.0 + paddle.erf(input / math.sqrt(2.0)))
def forward(self, input):
return self.act(input)
class Projector(nn.Layer):
def __init__(self, text_config, vision_config, prefix=""):
super().__init__()
self.prefix_name = prefix
self.text_config = text_config
self.vision_config = vision_config
self.merge_kernel_size = (2, 2)
self.hidden_size = self.vision_config.hidden_size * self.merge_kernel_size[0] * self.merge_kernel_size[1]
self.pre_norm = nn.LayerNorm(self.vision_config.hidden_size, epsilon=1e-05)
self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size)
self.linear_1.weight.weight_loader = self.weight_loader
self.act = GELUActivation()
self.linear_2 = nn.Linear(self.hidden_size, self.text_config.hidden_size)
self.linear_2.weight.weight_loader = self.weight_loader
def forward(self, image_features, image_grid_thw):
m1, m2 = self.merge_kernel_size
if isinstance(image_features, (list, tuple)):
processed_features = list()
for image_feature, image_grid in zip(image_features, image_grid_thw):
image_feature = self.pre_norm(image_feature) # shape: (T*H*W, D)
t, h, w = image_grid
from einops import rearrange
image_feature = rearrange(
image_feature,
"(t h p1 w p2) d -> (t h w) (p1 p2 d)",
t=int(t),
h=int(h // m1),
p1=int(m1),
w=int(w // m2),
p2=int(m2),
)
hidden_states = self.linear_1(image_feature)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
processed_features.append(hidden_states)
return processed_features
dim = image_features.shape[-1]
image_features = paddle.reshape(image_features, [-1, dim])
hidden_states = self.pre_norm(image_features)
hidden_states = paddle.reshape(hidden_states, [-1, self.hidden_size])
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
def weight_loader(self, param, loaded_weight, loaded_shard_id: Optional[str] = None):
loaded_weight = loaded_weight.transpose([1, 0])
if not param._is_initialized():
param.initialize()
assert param.shape == loaded_weight.shape, (
f" Attempted to load weight ({loaded_weight.shape}) " f"into parameter ({param.shape})"
)
# Ensure loaded weight dtype matches model param dtype
if loaded_weight.dtype != param.dtype:
if loaded_weight.dtype == paddle.int8 and param.dtype == paddle.float8_e4m3fn:
loaded_weight = loaded_weight.view(param.dtype)
else:
loaded_weight = loaded_weight.cast(param.dtype)
h2d_copy(param, loaded_weight)