mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-12-24 13:28:13 +08:00
* [RL] Support Rollout Routing Replay
* add routing indices cache
* fix config bug and moe forward bug
* R3 Support GLM
* support eb4.5
* fix merge bug
* Apply suggestion from @Copilot
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
* Apply suggestion from @Copilot
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
* Apply suggestion from @Copilot
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
* Apply suggestion from @Copilot
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
* add routing replay ci
* support glm topk
* support orther top_k
* fix ci bug
* pre-commit
* only support chatcmpl
* Revert "Revert "[RL] Support Rollout Routing Replay (#5321)" (#5402)"
This reverts commit c45e064f3d.
* Fix XPU and NPU bug
---------
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Yuanle Liu <yuanlehome@163.com>
347 lines
12 KiB
Python
347 lines
12 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import copy
|
|
import os
|
|
import shutil
|
|
from abc import ABC, abstractmethod
|
|
from typing import Dict, List, Optional
|
|
|
|
import paddle
|
|
import paddle.distributed as dist
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
from fastdeploy.config import FDConfig
|
|
|
|
|
|
@triton.jit
|
|
def _save_routing_kernel(
|
|
ROUTING_REPLAY_TABLE_PTR,
|
|
TOPK_IDS_PTR,
|
|
BATCH_ID_PER_TOKEN_PTR,
|
|
CU_SEQLENS_Q_PTR,
|
|
SEQ_LENS_DECODER_PTR,
|
|
LAYER_IDX,
|
|
TOKEN_NUM,
|
|
TOP_K,
|
|
NUM_HIDDEN_LAYERS,
|
|
MAX_MODEL_LEN,
|
|
BLOCK_SIZE_M: tl.constexpr,
|
|
BLOCK_SIZE_K: tl.constexpr,
|
|
):
|
|
pid_m = tl.program_id(axis=0)
|
|
|
|
token_offsets = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
token_mask = token_offsets < TOKEN_NUM
|
|
|
|
k_offsets = tl.arange(0, BLOCK_SIZE_K)
|
|
|
|
k_mask = k_offsets < TOP_K
|
|
|
|
topk_ids_ptrs = TOPK_IDS_PTR + token_offsets[:, None] * TOP_K + k_offsets[None, :]
|
|
# [BLOCK_SIZE_M, BLOCK_SIZE_K]
|
|
|
|
load_mask = token_mask[:, None] & k_mask[None, :]
|
|
topk_vals = tl.load(topk_ids_ptrs, mask=load_mask)
|
|
|
|
batch_ids = tl.load(BATCH_ID_PER_TOKEN_PTR + token_offsets, mask=token_mask)
|
|
pad_mask = token_mask & (batch_ids != -1)
|
|
# [0, 3, 4, 10, 12][0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 3, 3]
|
|
# -> [0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 10, 10]
|
|
# [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] - [0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 10, 10]
|
|
# -> [0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1]
|
|
start_offsets = tl.load(CU_SEQLENS_Q_PTR + batch_ids, mask=pad_mask)
|
|
token_relative_index = token_offsets - start_offsets
|
|
|
|
# [BLOCK_SIZE_M]
|
|
len_decoder = tl.load(SEQ_LENS_DECODER_PTR + batch_ids, mask=pad_mask)
|
|
token_seq_pos = len_decoder + token_relative_index
|
|
|
|
STRIDE_BUF_SEQ = NUM_HIDDEN_LAYERS * MAX_MODEL_LEN * TOP_K
|
|
STRIDE_BUF_LAYER = MAX_MODEL_LEN * TOP_K
|
|
STRIDE_BUF_TOKEN = TOP_K
|
|
|
|
# [BLOCK_SIZE_M, BLOCK_SIZE_K]
|
|
output_ptrs = (
|
|
ROUTING_REPLAY_TABLE_PTR
|
|
+ batch_ids[:, None] * STRIDE_BUF_SEQ
|
|
+ LAYER_IDX * STRIDE_BUF_LAYER
|
|
+ token_seq_pos[:, None] * STRIDE_BUF_TOKEN
|
|
+ k_offsets[None, :]
|
|
)
|
|
|
|
pos_mask = token_seq_pos < MAX_MODEL_LEN
|
|
pos_mask = pos_mask & pad_mask
|
|
|
|
# [BLOCK_SIZE_M, BLOCK_SIZE_K]
|
|
pos_mask = pos_mask[:, None] & k_mask[None, :]
|
|
|
|
final_mask = load_mask & pos_mask
|
|
|
|
tl.store(output_ptrs, topk_vals, mask=final_mask)
|
|
|
|
|
|
def save_routing_to_buffer(
|
|
routing_replay_table: paddle.Tensor, # [max_num_seqs, num_layers, max_len, top_k]
|
|
topk_ids: paddle.Tensor, # [token_num, top_k]
|
|
batch_id_per_token: paddle.Tensor, # [token_num, 1]
|
|
seq_lens_decoder: paddle.Tensor, # [max_num_seqs, 1]
|
|
cu_seqlens_q: paddle.Tensor, # [max_num_seqs + 1, 1]
|
|
layer_idx: int,
|
|
tp_size: int,
|
|
ep_size: int,
|
|
tp_group: dist.communication.group.Group,
|
|
):
|
|
if tp_size > 1 and ep_size > 1:
|
|
token_num_per_rank = topk_ids.shape[0]
|
|
topk_ids_all = paddle.zeros([token_num_per_rank * tp_size, topk_ids.shape[1]], dtype=topk_ids.dtype)
|
|
paddle.distributed.all_gather(topk_ids_all, topk_ids, tp_group)
|
|
topk_ids = topk_ids_all[: batch_id_per_token.shape[0], :]
|
|
|
|
token_num, top_k = topk_ids.shape
|
|
max_num_seqs, num_hidden_layers, max_model_len, _ = routing_replay_table.shape
|
|
assert token_num > 0
|
|
|
|
assert topk_ids.shape[1] == routing_replay_table.shape[3], (topk_ids.shape[1], routing_replay_table.shape[3])
|
|
assert batch_id_per_token.shape[0] == token_num, (batch_id_per_token.shape[0], token_num)
|
|
assert seq_lens_decoder.shape[0] == max_num_seqs, (seq_lens_decoder.shape[0], max_num_seqs)
|
|
|
|
BLOCK_SIZE_M = 128
|
|
BLOCK_SIZE_K = triton.next_power_of_2(top_k) # top_k
|
|
|
|
grid = (triton.cdiv(token_num, BLOCK_SIZE_M),)
|
|
_save_routing_kernel[grid](
|
|
routing_replay_table,
|
|
topk_ids,
|
|
batch_id_per_token,
|
|
cu_seqlens_q,
|
|
seq_lens_decoder,
|
|
LAYER_IDX=layer_idx,
|
|
TOKEN_NUM=token_num,
|
|
TOP_K=top_k,
|
|
NUM_HIDDEN_LAYERS=num_hidden_layers,
|
|
MAX_MODEL_LEN=max_model_len,
|
|
BLOCK_SIZE_M=BLOCK_SIZE_M,
|
|
BLOCK_SIZE_K=BLOCK_SIZE_K,
|
|
)
|
|
|
|
|
|
class RoutingReplayManager:
|
|
"""Request level routing replay table manager"""
|
|
|
|
def __init__(
|
|
self,
|
|
fd_config: FDConfig,
|
|
):
|
|
self.max_num_seqs = fd_config.scheduler_config.max_num_seqs
|
|
self.max_model_len = fd_config.model_config.max_model_len
|
|
self.num_moe_layers = fd_config.model_config.num_hidden_layers - fd_config.model_config.moe_layer_start_index
|
|
|
|
if fd_config.model_config.architectures[0] == "Glm4MoeForCausalLM":
|
|
self.moe_top_k = fd_config.model_config.num_experts_per_tok
|
|
else:
|
|
self.moe_top_k = fd_config.model_config.moe_k
|
|
self.tp_rank = fd_config.parallel_config.tensor_parallel_rank
|
|
|
|
self.routing_store = get_routing_store(fd_config=fd_config)
|
|
self.routing_batch_to_request: Dict[int, str] = {}
|
|
self.routing_replay_table = paddle.full(
|
|
shape=[self.max_num_seqs, self.num_moe_layers, self.max_model_len, self.moe_top_k],
|
|
fill_value=-1,
|
|
dtype="int32",
|
|
)
|
|
|
|
def register_request(self, batch_id: int, request_id: str):
|
|
"""
|
|
Register a new request to routing replay table
|
|
Args:
|
|
batch_id: The batch ID of this request
|
|
request_id: The global ID of the request is usually executed by the training process in RL
|
|
"""
|
|
# Save requests that have been finished for the current slot
|
|
if batch_id in self.routing_batch_to_request:
|
|
pre_request_id = self._deregister_request(batch_id)
|
|
self._put_request_to_store(batch_id, pre_request_id)
|
|
# Register the new request
|
|
self.routing_batch_to_request[batch_id] = request_id
|
|
|
|
def _deregister_request(self, batch_id: int) -> str:
|
|
"""
|
|
Deregister a request from routing replay table
|
|
"""
|
|
assert batch_id in self.routing_batch_to_request
|
|
return self.routing_batch_to_request.pop(batch_id)
|
|
|
|
def _put_request_to_store(
|
|
self,
|
|
batch_id: int,
|
|
request_id: str,
|
|
):
|
|
if self.tp_rank == 0:
|
|
batch_buffer = self.routing_replay_table[batch_id]
|
|
for layer_id in range(self.num_moe_layers):
|
|
layer_buffer = batch_buffer[layer_id]
|
|
rollout_id = self.split_request_id(request_id)
|
|
self.routing_store.put(routing_indices=layer_buffer, rollout_id=rollout_id, layer_idx=layer_id)
|
|
|
|
self._clear_table_slot(batch_id)
|
|
|
|
def put_table_to_store(self):
|
|
"""Put the routing table"""
|
|
batch_ids = copy.deepcopy(list(self.routing_batch_to_request.keys()))
|
|
for batch_id in batch_ids:
|
|
request_id = self._deregister_request(batch_id)
|
|
self._put_request_to_store(batch_id, request_id)
|
|
|
|
def _clear_table_slot(self, batch_id: int):
|
|
assert 0 <= batch_id < self.max_num_seqs
|
|
self.routing_replay_table[batch_id].fill_(-1)
|
|
|
|
def clear_routing_table(self):
|
|
"""Clear all slots of the routing replay table"""
|
|
self.routing_replay_table.fill_(-1)
|
|
|
|
def _clear_store(self):
|
|
"""Clear routing store"""
|
|
self.routing_store.clear_store()
|
|
|
|
def _clear_request_of_store(self, request_id):
|
|
"""Clear one request of routing store"""
|
|
rollout_id = self.split_request_id(request_id)
|
|
for layer_idx in range(self.num_moe_layers):
|
|
self.routing_store.clear(rollout_id=rollout_id, layer_idx=layer_idx)
|
|
|
|
def get_request_from_store(self, request_id: str) -> List[paddle.Tensor]:
|
|
"""Get the routing indices of the request from store"""
|
|
routing_list = []
|
|
rollout_id = self.split_request_id(request_id)
|
|
for layer_idx in range(self.num_moe_layers):
|
|
one_layer_routing = self.routing_store.get(rollout_id, layer_idx)
|
|
routing_list.append(one_layer_routing)
|
|
|
|
return routing_list
|
|
|
|
def get_routing_table(self) -> paddle.Tensor:
|
|
return self.routing_replay_table
|
|
|
|
def split_request_id(self, request_id: str):
|
|
"""Split the request id to get rollout id"""
|
|
chat_type, tmp_str = request_id.split("-", 1)
|
|
# NOTE(gongshaotian): only support chatcmpl now
|
|
# assert chat_type == "chatcmpl"
|
|
reversed_tmp_str = tmp_str[::-1].split("-", 5)
|
|
rollout_id = reversed_tmp_str[-1][::-1]
|
|
return rollout_id
|
|
|
|
|
|
class RoutingStoreBase(ABC):
|
|
"""Base class for routing store"""
|
|
|
|
def __init__(self, fd_config: FDConfig) -> None:
|
|
self.fd_config = fd_config
|
|
|
|
@abstractmethod
|
|
def put(self, routing_indices: paddle.Tensor, rollout_id: str, layer_idx: Optional[int] = None) -> None:
|
|
"""Put the routing indices into store"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def get(self, rollout_id: str, layer_idx: Optional[int] = None) -> paddle.Tensor:
|
|
"""Get the routing indices from store"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def clear(self, rollout_id: str, layer_idx: Optional[int] = None) -> None:
|
|
"""Clear the routing indices of the request"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def clear_store(
|
|
self,
|
|
):
|
|
"""Clear the routing indices store"""
|
|
raise NotImplementedError
|
|
|
|
|
|
class RoutingStoreLocal(RoutingStoreBase):
|
|
"""Routing Store using local memory"""
|
|
|
|
def __init__(self, fd_config) -> None:
|
|
super().__init__(fd_config=fd_config)
|
|
self.local_store_dir = fd_config.routing_replay_config.local_store_dir
|
|
|
|
def put(self, routing_indices: paddle.Tensor, rollout_id: str, layer_idx: int) -> None:
|
|
"""Put the routing indices into store"""
|
|
dir_path = os.path.join(self.local_store_dir, f"{rollout_id}")
|
|
os.makedirs(dir_path, exist_ok=True)
|
|
file_path = os.path.join(dir_path, f"layer_{layer_idx}.pdtensor")
|
|
paddle.save(routing_indices, file_path)
|
|
|
|
def get(
|
|
self,
|
|
rollout_id: str,
|
|
layer_idx: int = None,
|
|
) -> paddle.Tensor:
|
|
"""Get the routing indices from store"""
|
|
dir_path = os.path.join(self.local_store_dir, f"{rollout_id}")
|
|
file_path = os.path.join(dir_path, f"layer_{layer_idx}.pdtensor")
|
|
assert os.path.exists(file_path), f"File not found: {file_path}"
|
|
layer_routing_indices = paddle.load(file_path)
|
|
|
|
return layer_routing_indices
|
|
|
|
def clear(
|
|
self,
|
|
rollout_id: str,
|
|
layer_idx: int = None,
|
|
) -> None:
|
|
"""Clear the routing indices of the request"""
|
|
dir_path = os.path.join(self.local_store_dir, f"{rollout_id}")
|
|
file_path = os.path.join(dir_path, f"layer_{layer_idx}.pdtensor")
|
|
assert os.path.exists(file_path), f"File not found: {file_path}"
|
|
os.remove(file_path)
|
|
|
|
# Delete empty directory
|
|
if len(os.listdir(dir_path)) == 0:
|
|
os.rmdir(dir_path)
|
|
|
|
def clear_store(self):
|
|
"""Clear the routing indices store"""
|
|
if os.path.isdir(self.local_store_dir):
|
|
for file_name in os.listdir(self.local_store_dir):
|
|
file_path = os.path.join(self.local_store_dir, file_name)
|
|
shutil.rmtree(file_path)
|
|
|
|
|
|
class RoutingStoreRDMA(RoutingStoreBase):
|
|
"""Routing Store using RDMA"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
|
|
def get_routing_store(fd_config: FDConfig) -> RoutingStoreBase:
|
|
if fd_config.routing_replay_config.routing_store_type == "local":
|
|
return RoutingStoreLocal(fd_config=fd_config)
|
|
elif fd_config.routing_replay_config.routing_store_type == "rdma":
|
|
return RoutingStoreRDMA(fd_config=fd_config)
|
|
else:
|
|
raise ValueError(
|
|
f"Invalid routing store type: '{fd_config.routing_replay_config.routing_store_type}'. "
|
|
"Valid types are: 'local', 'rdma'"
|
|
)
|