Files
FastDeploy/fastdeploy/entrypoints/openai/serving_completion.py
qwes5s5 d79438bb86
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
add detoken switch (#5463)
2025-12-10 21:44:02 +08:00

904 lines
42 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import asyncio
import itertools
import time
import traceback
import uuid
from collections.abc import Iterable
from typing import List, Optional
import numpy as np
from fastdeploy.engine.request import RequestOutput
from fastdeploy.entrypoints.openai.protocol import (
CompletionLogprobs,
CompletionRequest,
CompletionResponse,
CompletionResponseChoice,
CompletionResponseStreamChoice,
CompletionStreamResponse,
CompletionTokenUsageInfo,
ErrorInfo,
ErrorResponse,
PromptTokenUsageInfo,
UsageInfo,
)
from fastdeploy.trace.constants import LoggingEventName
from fastdeploy.trace.trace_logger import print as trace_print
from fastdeploy.utils import (
ErrorCode,
ErrorType,
ParameterError,
api_server_logger,
clamp_prompt_logprobs,
get_host_ip,
)
from fastdeploy.worker.output import (
Logprob,
LogprobsLists,
LogprobsTensors,
PromptLogprobs,
)
NONES = itertools.repeat(None)
class OpenAIServingCompletion:
def __init__(self, engine_client, models, pid, ips, max_waiting_time):
self.engine_client = engine_client
self.models = models
self.pid = pid
self.max_waiting_time = max_waiting_time
if ips is not None:
if isinstance(ips, list):
self.master_ip = ips[0]
else:
self.master_ip = ips.split(",")[0]
self.is_master_ip = get_host_ip() == self.master_ip
else:
self.master_ip = "0.0.0.0"
self.is_master_ip = True
api_server_logger.info(f"master ip: {self.master_ip}")
def _check_master(self):
return self.engine_client.is_master or self.is_master_ip
async def create_completion(self, request: CompletionRequest):
"""
Create a completion for the given prompt.
"""
if not self._check_master():
err_msg = (
f"Only master node can accept completion request, please send request to master node: {self.master_ip}"
)
api_server_logger.error(err_msg)
return ErrorResponse(error=ErrorInfo(message=err_msg, type=ErrorType.INTERNAL_ERROR))
if self.models:
is_supported, request.model = self.models.is_supported_model(request.model)
if not is_supported:
err_msg = f"Unsupported model: [{request.model}], support [{', '.join([x.name for x in self.models.model_paths])}] or default"
api_server_logger.error(err_msg)
return ErrorResponse(
error=ErrorInfo(message=err_msg, type=ErrorType.INTERNAL_ERROR, code=ErrorCode.MODEL_NOT_SUPPORT)
)
created_time = int(time.time())
if request.request_id is not None:
request_id = request.request_id
if not request_id.startswith("cmpl-"):
request_id = f"cmpl-{request_id}"
elif request.user is not None:
request_id = f"cmpl-{request.user}-{uuid.uuid4()}"
else:
request_id = f"cmpl-{uuid.uuid4()}"
api_server_logger.info(f"Initialize request {request_id}: {request}")
request_prompt_ids = None
request_prompts = None
# Handle prompt and prompt_token_ids
try:
if request.prompt_token_ids is not None: # let `prompt_token_ids` support batch inference
assert len(request.prompt_token_ids) > 0, "prompt_token_ids should not be an empty list"
if isinstance(request.prompt_token_ids[0], list):
request_prompt_ids = request.prompt_token_ids
elif isinstance(request.prompt_token_ids[0], int):
request_prompt_ids = [request.prompt_token_ids]
else:
raise ValueError(
"If prompt_token_ids is provided, its type should be one of: list[int], list[list[int]]"
)
# reset `prompt_token_ids` to avoid data processor directly using it; let data processor fill it
request.prompt_token_ids = None
else:
if isinstance(request.prompt, str):
request_prompts = [request.prompt]
elif isinstance(request.prompt, list) and all(isinstance(item, int) for item in request.prompt):
request_prompt_ids = [request.prompt]
elif isinstance(request.prompt, list) and all(isinstance(item, str) for item in request.prompt):
request_prompts = request.prompt
elif isinstance(request.prompt, list):
for item in request.prompt:
if isinstance(item, list) and all(isinstance(x, int) for x in item):
continue
else:
raise ValueError("If prompt is a list, each item type must be one of: str, list[int]")
request_prompt_ids = request.prompt
else:
raise ValueError("Prompt type must be one of: str, list[str], list[int], list[list[int]]")
except Exception as e:
error_msg = f"OpenAIServingCompletion create_completion: {e}, {str(traceback.format_exc())}"
api_server_logger.error(error_msg)
return ErrorResponse(error=ErrorInfo(message=error_msg, type=ErrorType.INTERNAL_ERROR))
if request_prompt_ids is not None:
request_prompts = request_prompt_ids
num_choices = len(request_prompts) * (1 if request.n is None else request.n)
api_server_logger.info(f"Start preprocessing request: req_id={request_id}), num_choices={num_choices}")
prompt_batched_token_ids = []
prompt_tokens_list = []
max_tokens_list = []
try:
if self.max_waiting_time < 0:
await self.engine_client.semaphore.acquire()
else:
await asyncio.wait_for(self.engine_client.semaphore.acquire(), timeout=self.max_waiting_time)
except Exception as e:
error_msg = (
f"OpenAIServingCompletion waiting error: {e}, {str(traceback.format_exc())}, "
f"max waiting time: {self.max_waiting_time}"
)
api_server_logger.error(error_msg)
return ErrorResponse(
error=ErrorInfo(message=error_msg, code=ErrorCode.TIMEOUT, type=ErrorType.TIMEOUT_ERROR)
)
try:
try:
for idx, prompt in enumerate(request_prompts):
request_id_idx = f"{request_id}_{idx}"
current_req_dict = request.to_dict_for_infer(request_id_idx, prompt)
current_req_dict["arrival_time"] = time.time()
prompt_token_ids = await self.engine_client.format_and_add_data(current_req_dict) # tokenize
if isinstance(prompt_token_ids, np.ndarray):
prompt_token_ids = prompt_token_ids.tolist()
prompt_tokens_list.append(current_req_dict.get("prompt_tokens"))
prompt_batched_token_ids.append(prompt_token_ids)
max_tokens_list.append(current_req_dict.get("max_tokens"))
del current_req_dict
except ParameterError as e:
api_server_logger.error(f"OpenAIServingCompletion format error: {e}, {e.message}")
self.engine_client.semaphore.release()
return ErrorResponse(
error=ErrorInfo(code="400", message=str(e.message), type="invalid_request", param=e.param)
)
except Exception as e:
error_msg = f"OpenAIServingCompletion format error: {e}, {str(traceback.format_exc())}"
api_server_logger.error(error_msg)
self.engine_client.semaphore.release()
return ErrorResponse(
error=ErrorInfo(message=str(e), code=ErrorCode.INVALID_VALUE, type=ErrorType.INVALID_REQUEST_ERROR)
)
if request.stream:
return self.completion_stream_generator(
request=request,
num_choices=num_choices,
request_id=request_id,
created_time=created_time,
model_name=request.model,
prompt_batched_token_ids=prompt_batched_token_ids,
prompt_tokens_list=prompt_tokens_list,
max_tokens_list=max_tokens_list,
)
else:
try:
return await self.completion_full_generator(
request=request,
num_choices=num_choices,
request_id=request_id,
created_time=created_time,
model_name=request.model,
prompt_batched_token_ids=prompt_batched_token_ids,
prompt_tokens_list=prompt_tokens_list,
max_tokens_list=max_tokens_list,
)
except Exception as e:
error_msg = (
f"OpenAIServingCompletion completion_full_generator error: {e}, {str(traceback.format_exc())}"
)
api_server_logger.error(error_msg)
return ErrorResponse(error=ErrorInfo(message=error_msg, type=ErrorType.INTERNAL_ERROR))
except Exception as e:
error_msg = f"OpenAIServingCompletion create_completion error: {e}, {str(traceback.format_exc())}"
api_server_logger.error(error_msg)
return ErrorResponse(error=ErrorInfo(message=error_msg, type=ErrorType.INTERNAL_ERROR))
async def completion_full_generator(
self,
request: CompletionRequest,
num_choices: int,
request_id: str,
created_time: int,
model_name: str,
prompt_batched_token_ids: list(),
prompt_tokens_list: list(),
max_tokens_list: list(),
):
"""
Process the full completion request with multiple choices.
"""
dealer = None
try:
request_ids = [f"{request_id}_{i}" for i in range(num_choices)]
# create dealer
dealer, response_queue = await self.engine_client.connection_manager.get_connection(
request_id, num_choices
)
for rid in request_ids:
dealer.write([b"", rid.encode("utf-8")])
valid_results = [dict()] * num_choices
output_tokens = [0] * num_choices
aggregated_top_logprobs = [[[], [], []] for _ in range(num_choices)]
aggregated_draft_top_logprobs = [[[], [], []] for _ in range(num_choices)]
aggregated_token_ids = [[] for _ in range(num_choices)]
aggregated_prompt_logprobs_tensors = [None] * num_choices
completion_batched_token_ids = [[] for _ in range(num_choices)]
current_waiting_time = 0
while num_choices > 0:
if self.engine_client.check_model_weight_status():
return ErrorResponse(
error=ErrorInfo(
message="Model weight cleared",
code=ErrorCode.INVALID_VALUE,
type=ErrorType.INVALID_REQUEST_ERROR,
)
)
try:
response = await asyncio.wait_for(response_queue.get(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
continue
for data in response:
rid = int(data["request_id"].split("_")[-1])
if data.get("error_code", 200) != 200:
raise ValueError("{}".format(data["error_msg"]))
output = data["outputs"]
output_top_logprobs = output.get("top_logprobs") or None
output_draft_top_logprobs = output.get("draft_top_logprobs") or None
if output_top_logprobs is not None:
aggregated_top_logprobs[rid][0].extend(output_top_logprobs[0])
aggregated_top_logprobs[rid][1].extend(output_top_logprobs[1])
aggregated_top_logprobs[rid][2].extend(output_top_logprobs[2])
# draft logprobs
if request.include_draft_logprobs and output_draft_top_logprobs is not None:
aggregated_draft_top_logprobs[rid][0].extend(output_draft_top_logprobs[0])
aggregated_draft_top_logprobs[rid][1].extend(output_draft_top_logprobs[1])
aggregated_draft_top_logprobs[rid][2].extend(output_draft_top_logprobs[2])
output_prompt_logprobs_tensors = data.get("prompt_logprobs") or None
if output_prompt_logprobs_tensors is not None:
aggregated_prompt_logprobs_tensors[rid] = output_prompt_logprobs_tensors
aggregated_token_ids[rid].extend(data["outputs"]["token_ids"])
self.engine_client.data_processor.process_response_dict(
data, stream=False, include_stop_str_in_output=request.include_stop_str_in_output
)
output_tokens[rid] += len(data["outputs"]["token_ids"])
completion_batched_token_ids[rid].extend(data["outputs"]["token_ids"])
if data.get("finished", False):
data["output_token_ids"] = output_tokens[rid]
data["outputs"]["top_logprobs"] = aggregated_top_logprobs[rid]
data["outputs"]["draft_top_logprobs"] = aggregated_draft_top_logprobs[rid]
data["outputs"]["token_ids"] = aggregated_token_ids[rid]
data["prompt_logprobs_tensors"] = aggregated_prompt_logprobs_tensors[rid]
valid_results[rid] = data
num_choices -= 1
break
res = self.request_output_to_completion_response(
final_res_batch=valid_results,
request=request,
request_id=request_id,
created_time=created_time,
model_name=model_name,
prompt_batched_token_ids=prompt_batched_token_ids,
completion_batched_token_ids=completion_batched_token_ids,
prompt_tokens_list=prompt_tokens_list,
max_tokens_list=max_tokens_list,
)
api_server_logger.info(f"Completion response: {res.model_dump_json()}")
return res
except Exception as e:
api_server_logger.error(f"Error in completion_full_generator: {e}", exc_info=True)
finally:
trace_print(LoggingEventName.POSTPROCESSING_END, request_id, getattr(request, "user", ""))
self.engine_client.semaphore.release()
if dealer is not None:
await self.engine_client.connection_manager.cleanup_request(request_id)
def _echo_back_prompt(self, request, idx):
"""
The echo pre-process of the smallest unit
"""
if isinstance(request.prompt, str):
prompt_text = request.prompt
elif isinstance(request.prompt, list):
if all(isinstance(item, str) for item in request.prompt):
prompt_text = request.prompt[idx]
elif all(isinstance(item, int) for item in request.prompt):
prompt_text = self.engine_client.data_processor.tokenizer.decode(request.prompt)
else:
prompt_text = self.engine_client.data_processor.tokenizer.decode(request.prompt[idx])
return prompt_text
async def _process_echo_logic(self, request, idx, res_outputs):
"""
Process the echo logic and return the modified text.
"""
if request.echo and res_outputs.get("send_idx", -1) == 0:
prompt_text = self._echo_back_prompt(request, idx // (1 if request.n is None else request.n))
res_outputs["text"] = prompt_text + (res_outputs["text"] or "")
return res_outputs
def calc_finish_reason(self, max_tokens, token_num, output, tool_called):
if max_tokens is None or token_num != max_tokens:
if tool_called or output.get("tool_call"):
return "tool_calls"
else:
return "stop"
else:
return "length"
async def completion_stream_generator(
self,
request: CompletionRequest,
num_choices: int,
request_id: str,
created_time: int,
model_name: str,
prompt_batched_token_ids: list(),
prompt_tokens_list: list(),
max_tokens_list: list(),
):
"""
Process the stream completion request.
"""
try:
dealer, response_queue = await self.engine_client.connection_manager.get_connection(
request_id, num_choices
)
for i in range(num_choices):
req_id = f"{request_id}_{i}"
dealer.write([b"", req_id.encode("utf-8")]) # 发送多路请求
output_tokens = [0] * num_choices
num_cache_tokens = [0] * num_choices
num_image_tokens = [0] * num_choices
inference_start_time = [0] * num_choices
reasoning_tokens = [0] * num_choices
first_iteration = [True] * num_choices
tool_called = [False] * num_choices
max_streaming_response_tokens = (
request.max_streaming_response_tokens
if request.max_streaming_response_tokens is not None
else (request.suffix or {}).get("max_streaming_response_tokens", 1)
) # dierctly passed & passed in suffix
max_streaming_response_tokens = max(1, max_streaming_response_tokens)
choices = []
chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
)
current_waiting_time = 0
while num_choices > 0:
if self.engine_client.check_model_weight_status():
raise ValueError("Engine is clearing model weight")
try:
response = await asyncio.wait_for(response_queue.get(), timeout=10)
current_waiting_time = 0
except asyncio.TimeoutError:
current_waiting_time += 10
if current_waiting_time == 300:
status, msg = self.engine_client.check_health()
if not status:
raise ValueError(f"Engine is not healthy: {msg}")
else:
current_waiting_time = 0
await asyncio.sleep(0.1)
continue
for res in response:
idx = int(res["request_id"].split("_")[-1])
if res.get("error_code", 200) != 200:
raise ValueError("{}".format(res["error_msg"]))
prompt_logprobs_res: Optional[PromptLogprobs] = None
if first_iteration[idx]:
prompt_logprobs_tensors = res.get("prompt_logprobs", None)
if request.prompt_logprobs is not None and prompt_logprobs_tensors is not None:
num_prompt_logprobs = (
request.prompt_logprobs
if request.prompt_logprobs != -1
else self.engine_client.ori_vocab_size
)
prompt_logprobs_res = self._build_prompt_logprobs(
prompt_logprobs_tensors, num_prompt_logprobs, request.include_logprobs_decode_token
)
if request.return_token_ids:
chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[
CompletionResponseStreamChoice(
index=idx,
text="",
prompt_token_ids=list(
prompt_batched_token_ids[idx // (1 if request.n is None else request.n)]
),
prompt_logprobs=clamp_prompt_logprobs(prompt_logprobs_res),
prompt_tokens=prompt_tokens_list[
idx // (1 if request.n is None else request.n)
],
completion_token_ids=None,
)
],
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
api_server_logger.info(
f"Completion Streaming response send_idx 0: {chunk.model_dump_json()}"
)
first_iteration[idx] = False
self.engine_client.data_processor.process_response_dict(
res, stream=True, include_stop_str_in_output=request.include_stop_str_in_output
)
if inference_start_time[idx] == 0:
arrival_time = res["metrics"]["first_token_time"]
inference_start_time[idx] = res["metrics"]["inference_start_time"]
else:
arrival_time = res["metrics"]["engine_recv_latest_token_time"] - inference_start_time[idx]
await self._process_echo_logic(request, idx, res["outputs"])
output = res["outputs"]
output_top_logprobs = output["top_logprobs"]
output_draft_top_logprobs = output["draft_top_logprobs"]
logprobs_res: Optional[CompletionLogprobs] = None
draft_logprobs_res: Optional[CompletionLogprobs] = None
if request.logprobs is not None and output_top_logprobs is not None:
num_logprobs = (
request.logprobs if request.logprobs != -1 else self.engine_client.ori_vocab_size
)
logprobs_res = self._create_completion_logprobs(output_top_logprobs, num_logprobs, 0)
# draft logprobs
if request.include_draft_logprobs and output_draft_top_logprobs is not None:
draft_logprobs_res = self._create_completion_logprobs(
output_draft_top_logprobs, num_logprobs, 0
)
output_tokens[idx] += len(output.get("token_ids", [])) or 0
num_cache_tokens[idx] += output.get("num_cache_tokens") or 0
if output.get("num_image_tokens"):
output_tokens[idx] += output.get("num_image_tokens")
num_image_tokens[idx] += output.get("num_image_tokens")
reasoning_tokens[idx] += output.get("reasoning_token_num", 0)
delta_message = CompletionResponseStreamChoice(
index=idx,
text=output["text"],
prompt_token_ids=None,
completion_token_ids=output.get("token_ids") if request.return_token_ids else None,
tool_calls=None,
completion_tokens=output.get("completion_tokens") if request.return_token_ids else None,
reasoning_content="",
arrival_time=arrival_time,
logprobs=logprobs_res,
prompt_logprobs=clamp_prompt_logprobs(prompt_logprobs_res),
draft_logprobs=draft_logprobs_res,
)
if not res["finished"] and "delta_message" in output:
delta_message_output = output["delta_message"]
if delta_message_output is None:
continue
delta_message.text = delta_message_output.content or ""
delta_message.reasoning_content = delta_message_output.reasoning_content or ""
if delta_message_output.tool_calls:
delta_message.tool_calls = delta_message_output.tool_calls
tool_called[idx] = True
choices.append(delta_message)
if res["finished"]:
choices[-1].finish_reason = self.calc_finish_reason(
max_tokens_list[idx // (1 if request.n is None else request.n)],
output_tokens[idx],
output,
tool_called[idx],
)
inference_start_time[idx] = 0
send_idx = output.get("send_idx")
# 只有当 send_idx 明确为 0 时才记录日志
if send_idx == 0 and not request.return_token_ids:
chunk_temp = chunk
chunk_temp.choices = choices
api_server_logger.info(
f"Completion Streaming response send_idx 0: {chunk_temp.model_dump_json()}"
)
del chunk_temp
if len(choices) == max_streaming_response_tokens or res["finished"]:
chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
metrics=res["metrics"] if request.collect_metrics else None,
)
yield f"data: {chunk.model_dump_json(exclude_unset=True)}\n\n"
choices = []
if res["finished"]:
num_choices -= 1
if getattr(request, "stream_options", None) and request.stream_options.include_usage:
usage_chunk = CompletionStreamResponse(
id=request_id,
created=created_time,
model=model_name,
choices=[],
usage=UsageInfo(
prompt_tokens=len(
prompt_batched_token_ids[idx // (1 if request.n is None else request.n)]
),
completion_tokens=output_tokens[idx],
total_tokens=len(
prompt_batched_token_ids[idx // (1 if request.n is None else request.n)]
)
+ output_tokens[idx],
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cache_tokens[idx]),
completion_tokens_details=CompletionTokenUsageInfo(
image_tokens=num_image_tokens[idx], reasoning_tokens=reasoning_tokens[idx]
),
),
metrics=res["metrics"] if request.collect_metrics else None,
)
yield f"data: {usage_chunk.model_dump_json(exclude_unset=True)}\n\n"
api_server_logger.info(f"Completion Streaming response last send: {chunk.model_dump_json()}")
except Exception as e:
api_server_logger.error(f"Error in completion_stream_generator: {e}, {str(traceback.format_exc())}")
yield f"data: {ErrorResponse(error=ErrorInfo(message=str(e), code='400', type=ErrorType.INTERNAL_ERROR)).model_dump_json(exclude_unset=True)}\n\n"
finally:
trace_print(LoggingEventName.POSTPROCESSING_END, request_id, getattr(request, "user", ""))
del request
if dealer is not None:
await self.engine_client.connection_manager.cleanup_request(request_id)
self.engine_client.semaphore.release()
yield "data: [DONE]\n\n"
def request_output_to_completion_response(
self,
final_res_batch: List[RequestOutput],
request: CompletionRequest,
request_id: str,
created_time: int,
model_name: str,
prompt_batched_token_ids: list(),
completion_batched_token_ids: list(),
prompt_tokens_list: list(),
max_tokens_list: list(),
) -> CompletionResponse:
choices: List[CompletionResponseChoice] = []
num_prompt_tokens = 0
num_generated_tokens = 0
num_cache_tokens = 0
num_image_tokens = 0
num_reasoning_tokens = 0
for idx in range(len(final_res_batch)):
final_res = final_res_batch[idx]
prompt_token_ids = prompt_batched_token_ids[idx // (1 if request.n is None else request.n)]
assert prompt_token_ids is not None
prompt_text = request.prompt
completion_token_ids = completion_batched_token_ids[idx]
output = final_res["outputs"]
output_top_logprobs = output.get("top_logprobs") or None
output_draft_top_logprobs = output.get("draft_top_logprobs") or None
aggregated_logprobs: Optional[CompletionLogprobs] = None
num_logprobs = request.logprobs if request.logprobs != -1 else self.engine_client.ori_vocab_size
if output_top_logprobs is not None:
aggregated_logprobs = self._create_completion_logprobs(output_top_logprobs, num_logprobs, 0)
aggregated_draft_logprobs: Optional[CompletionLogprobs] = None
if output_draft_top_logprobs is not None:
aggregated_draft_logprobs = self._create_completion_logprobs(
output_draft_top_logprobs, num_logprobs, 0
)
prompt_logprobs_res: Optional[PromptLogprobs] = None
prompt_logprobs_tensors = final_res.get("prompt_logprobs_tensors", None)
if request.prompt_logprobs is not None and prompt_logprobs_tensors is not None:
num_prompt_logprobs = (
request.prompt_logprobs if request.prompt_logprobs != -1 else self.engine_client.ori_vocab_size
)
prompt_logprobs_res = self._build_prompt_logprobs(
prompt_logprobs_tensors, num_prompt_logprobs, request.include_logprobs_decode_token
)
if request.echo:
prompt_text = self._echo_back_prompt(request, idx // (1 if request.n is None else request.n))
token_ids = [*prompt_token_ids, *output["token_ids"]]
output_text = prompt_text + output["text"]
else:
token_ids = output["token_ids"]
output_text = output["text"]
finish_reason = self.calc_finish_reason(
max_tokens_list[idx // (1 if request.n is None else request.n)],
final_res["output_token_ids"],
output,
False,
)
choice_data = CompletionResponseChoice(
token_ids=token_ids,
index=len(choices),
text=output_text,
prompt_token_ids=prompt_token_ids if request.return_token_ids else None,
completion_token_ids=completion_token_ids if request.return_token_ids else None,
completion_tokens=output.get("completion_tokens") if request.return_token_ids else None,
prompt_tokens=(
prompt_tokens_list[idx // (1 if request.n is None else request.n)]
if request.return_token_ids
else None
),
reasoning_content=output.get("reasoning_content"),
tool_calls=output.get("tool_call"),
logprobs=aggregated_logprobs,
draft_logprobs=aggregated_draft_logprobs,
prompt_logprobs=clamp_prompt_logprobs(prompt_logprobs_res),
finish_reason=finish_reason,
)
choices.append(choice_data)
num_generated_tokens += final_res["output_token_ids"]
num_prompt_tokens += len(prompt_token_ids)
num_cache_tokens += output.get("num_cache_tokens") or 0
if output.get("num_image_tokens"):
num_generated_tokens += output.get("num_image_tokens")
num_image_tokens += output.get("num_image_tokens")
num_reasoning_tokens += output.get("reasoning_token_num", 0)
num_prompt_tokens = num_prompt_tokens // (1 if request.n is None else request.n)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
prompt_tokens_details=PromptTokenUsageInfo(cached_tokens=num_cache_tokens),
completion_tokens_details=CompletionTokenUsageInfo(
reasoning_tokens=num_reasoning_tokens, image_tokens=num_image_tokens
),
)
del request
return CompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
def _create_completion_logprobs(
self,
output_top_logprobs,
request_logprobs: Optional[int] = None,
prompt_text_offset: Optional[int] = None,
) -> Optional[CompletionLogprobs]:
"""Create OpenAI-style logprobs for completions."""
# Parameter validation
if output_top_logprobs is None or len(output_top_logprobs) < 3 or any(not lst for lst in output_top_logprobs):
return None
logprobs_res: Optional[CompletionLogprobs] = None
# Iterate over the top-k candidates for each token
for logprob_token_ids, logprobs, sampled_token_ranks in zip(
output_top_logprobs[0], output_top_logprobs[1], output_top_logprobs[2]
):
top_logprobs = LogprobsLists(
logprob_token_ids=[logprob_token_ids],
logprobs=[logprobs],
sampled_token_ranks=[sampled_token_ranks],
)
# Build the logprobs response
step_logprobs_res = self._build_logprobs_response(
response_logprobs=top_logprobs,
request_top_logprobs=request_logprobs,
prompt_text_offset=prompt_text_offset,
)
if logprobs_res is None:
logprobs_res = step_logprobs_res
else:
# Append the new tokens to the existing logprobs response
logprobs_res.tokens.extend(step_logprobs_res.tokens)
logprobs_res.token_logprobs.extend(step_logprobs_res.token_logprobs)
logprobs_res.top_logprobs.extend(step_logprobs_res.top_logprobs)
return logprobs_res
def _build_logprobs_response(
self,
response_logprobs: Optional[LogprobsLists] = None,
request_top_logprobs: Optional[int] = None,
prompt_text_offset: Optional[int] = None,
) -> Optional[CompletionLogprobs]:
"""
Construct a logprobs response object in line with the OpenAI style.
Retain the complete top-k candidates and avoid circular references.
"""
# Parameter validation
if response_logprobs is None or request_top_logprobs is None or request_top_logprobs < 0:
return None
try:
# The top-k candidates for the current token
topk_token_ids = []
topk_logprobs = []
if response_logprobs.logprob_token_ids and len(response_logprobs.logprob_token_ids) > 0:
topk_token_ids = response_logprobs.logprob_token_ids[0][: request_top_logprobs + 1]
if response_logprobs.logprobs and len(response_logprobs.logprobs) > 0:
topk_logprobs = response_logprobs.logprobs[0][: request_top_logprobs + 1]
# Construct the sampled token object (avoid sharing references with top_logprob_entries)
tokens = []
token_logprobs = []
top_logprobs = {}
idx = 0
for tid, lp in zip(topk_token_ids, topk_logprobs):
token_str = self.engine_client.data_processor.process_logprob_response(
[tid], clean_up_tokenization_spaces=False
)
if "\ufffd" in token_str:
raw_token = self.engine_client.data_processor.tokenizer.convert_ids_to_tokens(tid)
token_bytes = raw_token.encode("utf-8", errors="replace")
token_str = "bytes:" + "".join(f"\\x{byte:02x}" for byte in token_bytes)
if idx == 0:
tokens.append(token_str)
token_logprobs.append(lp)
top_logprobs[token_str] = lp
idx += 1
# Construct the sampled token object (avoid sharing references with top_logprob_entries)
# text_offset = prompt_text_offset + len(tokens) - 1
return CompletionLogprobs(
tokens=tokens,
token_logprobs=token_logprobs,
top_logprobs=[top_logprobs],
# text_offset=[text_offset],
)
except Exception as e:
api_server_logger.error(f"Error in _build_logprobs_response: {str(e)}, {str(traceback.format_exc())}")
return None
def _build_prompt_logprobs(
self,
prompt_logprobs_tensors: LogprobsTensors,
num_prompt_logprobs: int,
include_logprobs_decode_token: bool,
):
"""Update with prompt logprobs from worker.
Args:
prompt_logprobs_tensors: tuple containing the prompt logprobs
tensors.
"""
token_ids, logprobs, ranks = prompt_logprobs_tensors
# Detokenize non-incrementally.
# Output is flat: [num_tok, num_lps] -> [num_tok * num_lps]
if include_logprobs_decode_token:
decoded_tokens = [
self.engine_client.data_processor.process_logprob_response(token_id)
for token_id in token_ids.flatten().tolist()
]
else:
decoded_tokens = None
# Recover shapes.
num_prompt_tokens, num_logprobs = logprobs.shape
# Pythonize the paddle tensors.
prompt_token_ranks = ranks.tolist()
prompt_logprobs = logprobs.tolist()
token_ids = token_ids.tolist()
result: Optional[PromptLogprobs] = [None]
# Make Logprob for each position.
for pos in range(num_prompt_tokens):
# Handle flattening.
offset = pos * num_logprobs
offset_end = offset + num_logprobs
decoded_tokens_for_pos = NONES if decoded_tokens is None else decoded_tokens[offset:offset_end]
# Update with the Logprob dictionary for this pos.
result.append(
self._make_logprob_dict(
prompt_logprobs[pos],
token_ids[pos],
decoded_tokens_for_pos,
prompt_token_ranks[pos],
num_prompt_logprobs,
)
)
return result
@staticmethod
def _make_logprob_dict(
logprobs: list[float],
logprob_token_ids: list[int],
decoded_tokens: Iterable[str | None],
rank: int,
num_logprobs: int,
) -> dict[int, Logprob]:
"""Make a Logprob dictionary for a position.
Args:
logprobs: list of log probabilities
logprob_token_ids: list of top token ids
decoded_tokens: list of decoded top tokens
rank: rank of the sampled token
num_logprobs: number of logprobs requested
by the user (in addition to sampled logprob)
Returns:
dict[token id, Logprob]
"""
if num_logprobs == -1:
num_logprobs = len(logprobs)
# We do not need a special case for the sampled token
# being in the topk, since inserting duplicated data
# into a dictionary twice is the same as doing it once.
topk_ranks = range(1, num_logprobs + 1)
ranks = itertools.chain((rank,), topk_ranks)
return {
token_id: Logprob(
logprob=logprob,
rank=rank,
decoded_token=token,
)
for token_id, logprob, rank, token in zip(logprob_token_ids, logprobs, ranks, decoded_tokens)
}