Files
FastDeploy/fastdeploy/entrypoints/openai/protocol.py
qwes5s5 d79438bb86
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
Deploy GitHub Pages / deploy (push) Has been cancelled
add detoken switch (#5463)
2025-12-10 21:44:02 +08:00

1109 lines
35 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import annotations
import json
import time
import uuid
from typing import Annotated, Any, Dict, List, Literal, Optional, Union
from pydantic import (
BaseModel,
ConfigDict,
Field,
ValidationInfo,
field_validator,
model_validator,
)
from fastdeploy.engine.pooling_params import PoolingParams
from fastdeploy.worker.output import PromptLogprobs
class InvalidParameterException(Exception):
"""Exception raised for invalid API parameters"""
def __init__(self, message: str, param: Optional[str] = None):
"""
Args:
message: Human-readable error message
param: The parameter that caused the error (optional)
"""
self.message = message
self.param = param
super().__init__(self.message)
def __str__(self):
if self.param:
return f"Invalid parameter '{self.param}': {self.message}"
return self.message
class ErrorResponse(BaseModel):
"""
Error response from OpenAI API.
"""
error: ErrorInfo
class ErrorInfo(BaseModel):
message: str
type: Optional[str] = None
param: Optional[str] = None
code: Optional[str] = None
class CompletionTokenUsageInfo(BaseModel):
"""
completion token usage info.
"""
reasoning_tokens: Optional[int] = None
image_tokens: Optional[int] = None
class PromptTokenUsageInfo(BaseModel):
"""
Prompt-related token usage info.
"""
cached_tokens: Optional[int] = None
image_tokens: Optional[int] = None
video_tokens: Optional[int] = None
class UsageInfo(BaseModel):
"""
Usage info for a single request.
"""
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
prompt_tokens_details: Optional[PromptTokenUsageInfo] = None
completion_tokens_details: Optional[CompletionTokenUsageInfo] = None
class ModelPermission(BaseModel):
id: str = Field(default_factory=lambda: f"modelperm-{str(uuid.uuid4().hex)}")
object: str = "model_permission"
created: int = Field(default_factory=lambda: int(time.time()))
allow_create_engine: bool = False
allow_sampling: bool = True
allow_logprobs: bool = True
allow_search_indices: bool = False
allow_view: bool = True
allow_fine_tuning: bool = False
organization: str = "*"
group: Optional[str] = None
is_blocking: bool = False
class ModelInfo(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "FastDeploy"
root: Optional[str] = None
parent: Optional[str] = None
max_model_len: Optional[int] = None
permission: list[ModelPermission] = Field(default_factory=list)
class ModelList(BaseModel):
object: str = "list"
data: list[ModelInfo] = Field(default_factory=list)
class FunctionCall(BaseModel):
"""
Function call.
"""
name: str
arguments: str
class ToolCall(BaseModel):
"""
Tool call.
"""
id: str = None
type: Literal["function"] = "function"
function: FunctionCall
class DeltaFunctionCall(BaseModel):
"""
Delta function call.
"""
name: Optional[str] = None
arguments: Optional[str] = None
# a tool call delta where everything is optional
class DeltaToolCall(BaseModel):
"""
Delta tool call.
"""
id: Optional[str] = None
type: Optional[Literal["function"]] = None
index: int
function: Optional[DeltaFunctionCall] = None
class ExtractedToolCallInformation(BaseModel):
# indicate if tools were called
tools_called: bool
# extracted tool calls
tool_calls: Optional[list[ToolCall]] = None
# content - per OpenAI spec, content AND tool calls can be returned rarely
# But some models will do this intentionally
content: Optional[str] = None
class FunctionDefinition(BaseModel):
"""
Function definition.
"""
name: str
description: Optional[str] = None
parameters: Optional[dict[str, Any]] = None
class ChatCompletionToolsParam(BaseModel):
"""
Chat completion tools parameter.
"""
type: Literal["function"] = "function"
function: FunctionDefinition
class ChatMessage(BaseModel):
"""
Chat message.
"""
role: Optional[str] = None
content: Optional[str] = None
multimodal_content: Optional[List[Any]] = None
reasoning_content: Optional[str] = None
audio_content: Optional[str] = None
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
prompt_tokens: Optional[str] = None
completion_tokens: Optional[str] = None
class ChatCompletionResponseChoice(BaseModel):
"""
Chat completion response choice.
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
index: int
message: ChatMessage
logprobs: Optional[LogProbs] = None
draft_logprobs: Optional[LogProbs] = None
prompt_logprobs: Optional[PromptLogprobs] = None
finish_reason: Optional[Literal["stop", "length", "tool_calls", "recover_stop"]]
class ChatCompletionResponse(BaseModel):
"""
Chat completion response.
"""
id: str
object: str = "chat.completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
class LogProbEntry(BaseModel):
"""
Log probability entry.
"""
token: str
logprob: float
bytes: Optional[List[int]] = None
top_logprobs: Optional[List[LogProbEntry]] = None
class LogProbs(BaseModel):
"""
LogProbs.
"""
content: Optional[List[LogProbEntry]] = None
refusal: Optional[Union[str, None]] = None
class DeltaMessage(BaseModel):
"""
Delta message for chat completion stream response.
"""
role: Optional[str] = None
content: Optional[str] = None
multimodal_content: Optional[List[Any]] = None
audio_content: Optional[str] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
reasoning_content: Optional[str] = None
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
prompt_tokens: Optional[str] = None
completion_tokens: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
"""
Chat completion response choice for stream response.
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
index: int
delta: DeltaMessage
logprobs: Optional[LogProbs] = None
draft_logprobs: Optional[LogProbs] = None
prompt_logprobs: Optional[PromptLogprobs] = None
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
arrival_time: Optional[float] = None
class ChatCompletionStreamResponse(BaseModel):
"""
Chat completion response for stream response.
"""
id: str
object: str = "chat.completion.chunk"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = None
metrics: Optional[Dict] = None
class CompletionResponseChoice(BaseModel):
"""
Completion response choice.
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
index: int
text: str
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
prompt_tokens: Optional[str] = None
completion_tokens: Optional[str] = None
arrival_time: Optional[float] = None
logprobs: Optional[CompletionLogprobs] = None
draft_logprobs: Optional[CompletionLogprobs] = None
prompt_logprobs: Optional[PromptLogprobs] = None
reasoning_content: Optional[str] = None
finish_reason: Optional[Literal["stop", "length", "tool_calls"]]
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
class CompletionResponse(BaseModel):
"""
Completion response.
"""
id: str
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseChoice]
usage: UsageInfo
class CompletionLogprobs(BaseModel):
"""
Completion logprobs.
"""
tokens: Optional[List[str]] = None
token_logprobs: Optional[List[float]] = None
top_logprobs: Optional[List[Dict]] = None
text_offset: Optional[List[int]] = None
class CompletionResponseStreamChoice(BaseModel):
"""
Completion response choice for stream response.
"""
model_config = ConfigDict(arbitrary_types_allowed=True)
index: int
text: str
arrival_time: float = None
logprobs: Optional[CompletionLogprobs] = None
draft_logprobs: Optional[CompletionLogprobs] = None
prompt_logprobs: Optional[PromptLogprobs] = None
prompt_token_ids: Optional[List[int]] = None
completion_token_ids: Optional[List[int]] = None
prompt_tokens: Optional[str] = None
completion_tokens: Optional[str] = None
reasoning_content: Optional[str] = None
finish_reason: Optional[Literal["stop", "length", "tool_calls"]] = None
tool_calls: Optional[List[DeltaToolCall | ToolCall]] = None
class CompletionStreamResponse(BaseModel):
"""
Completion response for stream response.
"""
id: str
object: str = "text_completion"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
choices: List[CompletionResponseStreamChoice]
usage: Optional[UsageInfo] = None
metrics: Optional[Dict] = None
class StreamOptions(BaseModel):
"""
Stream options.
"""
include_usage: Optional[bool] = True
continuous_usage_stats: Optional[bool] = False
class StructuralTag(BaseModel):
"""
Structural tag.
"""
begin: str
structural_tag_schema: Optional[dict[str, Any]] = Field(default=None, alias="schema")
end: str
class JsonSchemaResponseFormat(BaseModel):
"""
Json schema for ResponseFormat.
"""
name: str
description: Optional[str] = None
json_schema: Optional[dict[str, Any]] = Field(default=None, alias="schema")
strict: Optional[bool] = None
class StructuralTagResponseFormat(BaseModel):
"""
Structural tag for ResponseFormat.
"""
type: Literal["structural_tag"]
structures: list[StructuralTag]
triggers: list[str]
class ResponseFormat(BaseModel):
"""
response_format type.
"""
type: Literal["text", "json_object", "json_schema"]
json_schema: Optional[JsonSchemaResponseFormat] = None
AnyResponseFormat = Union[ResponseFormat, StructuralTagResponseFormat]
class CompletionRequest(BaseModel):
"""
Completion request to the engine.
"""
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/completions/create
model: Optional[str] = "default"
prompt: Union[List[int], List[List[int]], str, List[str]]
best_of: Optional[int] = None
echo: Optional[bool] = False
frequency_penalty: Optional[float] = Field(default=None, ge=-2, le=2)
logprobs: Optional[int] = None
include_draft_logprobs: Optional[bool] = False
include_logprobs_decode_token: Optional[bool] = True
prompt_logprobs: Optional[int] = None
# For logits and logprobs post processing
temp_scaled_logprobs: bool = False
top_p_normalized_logprobs: bool = False
max_tokens: Optional[int] = None
n: Optional[int] = 1
presence_penalty: Optional[float] = Field(default=None, ge=-2, le=2)
seed: Optional[int] = Field(default=None, ge=0, le=922337203685477580)
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
suffix: Optional[dict] = None
temperature: Optional[float] = Field(default=None, ge=0)
top_p: Optional[float] = Field(default=None, ge=0, le=1)
user: Optional[str] = None
request_id: Optional[str] = None
disaggregate_info: Optional[dict] = None
# doc: begin-completion-sampling-params
top_k: Optional[int] = None
min_p: Optional[float] = None
repetition_penalty: Optional[float] = None
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
min_tokens: Optional[int] = None
include_stop_str_in_output: Optional[bool] = False
bad_words: Optional[List[str]] = None
bad_words_token_ids: Optional[List[int]] = None
logits_processors_args: Optional[Dict] = None
# doc: end-completion-sampling-params
# doc: start-completion-extra-params
response_format: Optional[AnyResponseFormat] = None
guided_json: Optional[Union[str, dict, BaseModel]] = None
guided_regex: Optional[str] = None
guided_choice: Optional[list[str]] = None
guided_grammar: Optional[str] = None
max_streaming_response_tokens: Optional[int] = None
return_token_ids: Optional[bool] = None
prompt_token_ids: Optional[Union[List[int], List[List[int]]]] = None
mm_hashes: Optional[list] = None
# doc: end-completion-extra-params
collect_metrics: Optional[bool] = False
def to_dict_for_infer(self, request_id=None, prompt=None):
"""
Convert the request parameters into a dictionary
Returns:
dict: request parameters in dict format
"""
req_dict = {}
# parse request model into dict
if self.suffix is not None:
for key, value in self.suffix.items():
req_dict[key] = value
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
if request_id is not None:
req_dict["request_id"] = request_id
if prompt is not None:
req_dict["prompt"] = prompt
# if "prompt_token_ids" in req_dict:
# if "prompt" in req_dict:
# del req_dict["prompt"]
# else:
# assert len(prompt) > 0
guided_json_object = None
if self.response_format is not None:
if self.response_format.type == "json_object":
guided_json_object = True
elif self.response_format.type == "json_schema":
json_schema = self.response_format.json_schema.json_schema
assert json_schema is not None, "response_format.json_schema can not be None"
if isinstance(json_schema, (BaseModel, type(BaseModel))):
self.guided_json = json_schema.model_json_schema()
else:
self.guided_json = json_schema
if guided_json_object:
req_dict["guided_json_object"] = guided_json_object
guided_schema = [
"guided_json",
"guided_regex",
"guided_choice",
"guided_grammar",
"structural_tag",
]
for key in guided_schema:
item = getattr(self, key, None)
if item is not None:
req_dict[key] = item
if self.mm_hashes is not None and len(self.mm_hashes) > 0:
req_dict["mm_hashes"] = self.mm_hashes
return req_dict
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
"""
Validate stream options
"""
if data.get("stream_options") and not data.get("stream"):
raise ValueError("Stream options can only be defined when `stream=True`.")
guided_count = sum(
[
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None,
"guided_grammar" in data and data["guided_grammar"] is not None,
]
)
if guided_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex', 'guided_choice', 'guided_grammar')."
)
if data.get("mm_hashes", None):
assert isinstance(data["mm_hashes"], list), "`mm_hashes` must be a list."
return data
@model_validator(mode="before")
@classmethod
def check_logprobs(cls, data):
if (logprobs := data.get("logprobs")) is not None:
if logprobs < -1:
raise ValueError("`logprobs` must be a greater than -1.")
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
if prompt_logprobs < -1:
raise ValueError("`prompt_logprobs` must be a greater than -1.")
return data
class ChatCompletionRequest(BaseModel):
"""
Chat completion request to the engine.
"""
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/chat/create
messages: Union[List[Any], List[int]]
tools: Optional[List[ChatCompletionToolsParam]] = None
model: Optional[str] = "default"
frequency_penalty: Optional[float] = Field(None, le=2, ge=-2)
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = None
prompt_logprobs: Optional[int] = None
include_draft_logprobs: Optional[bool] = False
include_logprobs_decode_token: Optional[bool] = True
# For logits and logprobs post processing
temp_scaled_logprobs: bool = False
top_p_normalized_logprobs: bool = False
# remove max_tokens when field is removed from OpenAI API
max_tokens: Optional[int] = Field(
default=None,
deprecated="max_tokens is deprecated in favor of the max_completion_tokens field",
)
max_completion_tokens: Optional[int] = None
n: Optional[int] = 1
presence_penalty: Optional[float] = Field(None, le=2, ge=-2)
seed: Optional[int] = Field(default=None, ge=0, le=922337203685477580)
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
stream_options: Optional[StreamOptions] = None
temperature: Optional[float] = Field(None, ge=0)
top_p: Optional[float] = Field(None, le=1, ge=0)
user: Optional[str] = None
metadata: Optional[dict] = None
response_format: Optional[AnyResponseFormat] = None
request_id: Optional[str] = None
disaggregate_info: Optional[dict] = None
# doc: begin-chat-completion-sampling-params
top_k: Optional[int] = None
min_p: Optional[float] = None
min_tokens: Optional[int] = None
include_stop_str_in_output: Optional[bool] = False
bad_words: Optional[List[str]] = None
bad_words_token_ids: Optional[List[int]] = None
repetition_penalty: Optional[float] = None
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
logits_processors_args: Optional[Dict] = None
# doc: end-chat-completion-sampling-params
# doc: start-chat-completion-extra-params
chat_template_kwargs: Optional[dict] = None
chat_template: Optional[str] = None
reasoning_max_tokens: Optional[int] = None
structural_tag: Optional[str] = None
guided_json: Optional[Union[str, dict, BaseModel]] = None
guided_regex: Optional[str] = None
guided_choice: Optional[list[str]] = None
guided_grammar: Optional[str] = None
return_token_ids: Optional[bool] = None
prompt_token_ids: Optional[List[int]] = None
max_streaming_response_tokens: Optional[int] = None
disable_chat_template: Optional[bool] = False
mm_hashes: Optional[list] = None
completion_token_ids: Optional[List[int]] = None
# doc: end-chat-completion-extra-params
collect_metrics: Optional[bool] = False
def to_dict_for_infer(self, request_id=None):
"""
Convert the request parameters into a dictionary
Returns:
dict: request parameters in dict format
"""
req_dict = {}
req_dict["max_tokens"] = self.max_completion_tokens or self.max_tokens
req_dict["logprobs"] = self.top_logprobs if self.logprobs else None
req_dict["prompt_logprobs"] = self.prompt_logprobs
req_dict["temp_scaled_logprobs"] = self.temp_scaled_logprobs
req_dict["top_p_normalized_logprobs"] = self.top_p_normalized_logprobs
# parse request model into dict, priority: request params > metadata params
if self.metadata is not None:
assert (
"raw_request" not in self.metadata
), "The parameter `raw_request` is not supported now, please use completion api instead."
for key, value in self.metadata.items():
req_dict[key] = value
from fastdeploy.utils import api_server_logger
api_server_logger.warning("The parameter metadata is obsolete.")
for key, value in self.dict().items():
if value is not None:
req_dict[key] = value
if request_id is not None:
req_dict["request_id"] = request_id
if "prompt_token_ids" not in req_dict or not req_dict["prompt_token_ids"]:
# If disable_chat_template is set, then the first message in messages will be used as the prompt.
assert (
len(req_dict["messages"]) > 0
), "messages can not be an empty list, unless prompt_token_ids is passed"
if self.disable_chat_template:
req_dict["prompt"] = req_dict["messages"][0]["content"]
del req_dict["messages"]
guided_json_object = None
if self.response_format is not None:
if self.response_format.type == "json_object":
guided_json_object = True
elif self.response_format.type == "json_schema":
json_schema = self.response_format.json_schema.json_schema
assert json_schema is not None, "response_format.json_schema can not be None"
if isinstance(json_schema, (BaseModel, type(BaseModel))):
self.guided_json = json_schema.model_json_schema()
else:
self.guided_json = json_schema
elif self.response_format.type == "structural_tag":
structural_tag = self.response_format
assert structural_tag is not None and isinstance(structural_tag, StructuralTagResponseFormat)
self.structural_tag = json.dumps(structural_tag.model_dump(by_alias=True))
if guided_json_object:
req_dict["guided_json_object"] = guided_json_object
guided_schema = [
"guided_json",
"guided_regex",
"guided_choice",
"guided_grammar",
"structural_tag",
]
for key in guided_schema:
item = getattr(self, key, None)
if item is not None:
req_dict[key] = item
if self.mm_hashes is not None and len(self.mm_hashes) > 0:
req_dict["mm_hashes"] = self.mm_hashes
return req_dict
@model_validator(mode="before")
@classmethod
def validate_stream_options(cls, data):
"""
Validate stream options
"""
if data.get("stream_options") and not data.get("stream"):
raise ValueError("Stream options can only be defined when `stream=True`.")
guided_count = sum(
[
"guided_json" in data and data["guided_json"] is not None,
"guided_regex" in data and data["guided_regex"] is not None,
"guided_choice" in data and data["guided_choice"] is not None,
"guided_grammar" in data and data["guided_grammar"] is not None,
"structural_tag" in data and data["structural_tag"] is not None,
]
)
if guided_count > 1:
raise ValueError(
"You can only use one kind of guided decoding "
"('guided_json', 'guided_regex', 'guided_choice', 'guided_grammar', 'structural_tag')."
)
if data.get("mm_hashes", None):
assert isinstance(data["mm_hashes"], list), "`mm_hashes` must be a list."
return data
@model_validator(mode="before")
@classmethod
def check_logprobs(cls, data):
if (top_logprobs := data.get("top_logprobs")) is not None:
if top_logprobs < -1:
raise ValueError("`top_logprobs` must be a greater than -1.")
if not data.get("logprobs"):
raise ValueError("when using `top_logprobs`, `logprobs` must be set to true.")
if (prompt_logprobs := data.get("prompt_logprobs")) is not None:
if prompt_logprobs < -1:
raise ValueError("`prompt_logprobs` must be a greater than -1.")
return data
class ControlSchedulerRequest(BaseModel):
"""
Control scheduler request to the engine.
"""
reset: Optional[bool] = False
load_shards_num: Optional[int] = None
reallocate_shard: Optional[bool] = False
BatchRequestInputBody = ChatCompletionRequest
class BatchRequestInput(BaseModel):
"""
The per-line object of the batch input file.
NOTE: Currently only the `/v1/chat/completions` endpoint is supported.
"""
# A developer-provided per-request id that will be used to match outputs to
# inputs. Must be unique for each request in a batch.
custom_id: str
# The HTTP method to be used for the request. Currently only POST is
# supported.
method: str
# The OpenAI API relative URL to be used for the request. Currently
# /v1/chat/completions is supported.
url: str
# The parameters of the request.
body: BatchRequestInputBody
@field_validator("body", mode="before")
@classmethod
def check_type_for_url(cls, value: Any, info: ValidationInfo):
# Use url to disambiguate models
url: str = info.data["url"]
if url == "/v1/chat/completions":
if isinstance(value, dict):
return value
return ChatCompletionRequest.model_validate(value)
return value
class BatchResponseData(BaseModel):
# HTTP status code of the response.
status_code: int = 200
# An unique identifier for the API request.
request_id: str
# The body of the response.
body: Optional[ChatCompletionResponse] = None
class BatchRequestOutput(BaseModel):
"""
The per-line object of the batch output and error files
"""
id: str
# A developer-provided per-request id that will be used to match outputs to
# inputs.
custom_id: str
response: Optional[BatchResponseData]
# For requests that failed with a non-HTTP error, this will contain more
# information on the cause of the failure.
error: Optional[Any]
class EmbeddingCompletionRequest(BaseModel):
# Ordered by official OpenAI API documentation
# https://platform.openai.com/docs/api-reference/embeddings
model: Optional[str] = None
input: Union[list[int], list[list[int]], str, list[str]]
encoding_format: Literal["float", "base64"] = "float"
dimensions: Optional[int] = None
user: Optional[str] = None
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
# --8<-- [start:embedding-extra-params]
add_special_tokens: bool = Field(
default=True,
description=("If true (the default), special tokens (e.g. BOS) will be added to " "the prompt."),
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."
),
)
request_id: str = Field(
default_factory=lambda: f"{uuid.uuid4().hex}",
description=(
"The request_id related to this request. If the caller does "
"not set it, a uuid.uuid4().hex will be generated. This id is used "
"through out the inference process and return in response."
),
)
normalize: Optional[bool] = None
# --8<-- [end:embedding-extra-params]
def to_pooling_params(self):
return PoolingParams(
truncate_prompt_tokens=self.truncate_prompt_tokens, dimensions=self.dimensions, normalize=self.normalize
)
class EmbeddingChatRequest(BaseModel):
model: Optional[str] = None
messages: Union[List[Any], List[int]]
encoding_format: Literal["float", "base64"] = "float"
dimensions: Optional[int] = None
user: Optional[str] = None
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
# --8<-- [start:chat-embedding-extra-params]
add_generation_prompt: bool = Field(
default=False,
description=(
"If true, the generation prompt will be added to the chat template. "
"This is a parameter used by chat template in tokenizer config of the "
"model."
),
)
add_special_tokens: bool = Field(
default=True,
description=(
"If true, special tokens (e.g. BOS) will be added to the prompt "
"on top of what is added by the chat template. "
"For most models, the chat template takes care of adding the "
"special tokens so this should be set to false (as is the "
"default)."
),
)
chat_template: Optional[str] = Field(
default=None,
description=(
"A Jinja template to use for this conversion. "
"As of transformers v4.44, default chat template is no longer "
"allowed, so you must provide a chat template if the tokenizer "
"does not define one."
),
)
chat_template_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=(
"Additional keyword args to pass to the template renderer. " "Will be accessible by the chat template."
),
)
mm_processor_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=("Additional kwargs to pass to the HF processor."),
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."
),
)
request_id: str = Field(
default_factory=lambda: f"{uuid.uuid4().hex}",
description=(
"The request_id related to this request. If the caller does "
"not set it, a uuid.uuid4().hex will be generated. This id is used "
"through out the inference process and return in response."
),
)
normalize: Optional[bool] = None
# --8<-- [end:chat-embedding-extra-params]
@model_validator(mode="before")
@classmethod
def check_generation_prompt(cls, data):
if data.get("continue_final_message") and data.get("add_generation_prompt"):
raise ValueError("Cannot set both `continue_final_message` and " "`add_generation_prompt` to True.")
return data
def to_pooling_params(self):
return PoolingParams(
truncate_prompt_tokens=self.truncate_prompt_tokens, dimensions=self.dimensions, normalize=self.normalize
)
class EmbeddingResponseData(BaseModel):
index: int
object: str = "embedding"
embedding: Union[list[float], str]
class EmbeddingResponse(BaseModel):
id: str = Field(default_factory=lambda: f"embd-{uuid.uuid4().hex}")
object: str = "list"
created: int = Field(default_factory=lambda: int(time.time()))
model: str
data: list[EmbeddingResponseData]
usage: UsageInfo
EmbeddingRequest = Union[EmbeddingCompletionRequest, EmbeddingChatRequest]
PoolingCompletionRequest = EmbeddingCompletionRequest
PoolingChatRequest = EmbeddingChatRequest
class ChatRewardRequest(BaseModel):
model: Optional[str] = None
messages: Union[List[Any], List[int]]
user: Optional[str] = None
dimensions: Optional[int] = None
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None
# --8<-- [start:chat-embedding-extra-params]
add_generation_prompt: bool = Field(
default=False,
description=(
"If true, the generation prompt will be added to the chat template. "
"This is a parameter used by chat template in tokenizer config of the "
"model."
),
)
add_special_tokens: bool = Field(
default=False,
description=(
"If true, special tokens (e.g. BOS) will be added to the prompt "
"on top of what is added by the chat template. "
"For most models, the chat template takes care of adding the "
"special tokens so this should be set to false (as is the "
"default)."
),
)
chat_template: Optional[str] = Field(
default=None,
description=(
"A Jinja template to use for this conversion. "
"As of transformers v4.44, default chat template is no longer "
"allowed, so you must provide a chat template if the tokenizer "
"does not define one."
),
)
chat_template_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=(
"Additional keyword args to pass to the template renderer. " "Will be accessible by the chat template."
),
)
mm_processor_kwargs: Optional[dict[str, Any]] = Field(
default=None,
description=("Additional kwargs to pass to the HF processor."),
)
priority: int = Field(
default=0,
description=(
"The priority of the request (lower means earlier handling; "
"default: 0). Any priority other than 0 will raise an error "
"if the served model does not use priority scheduling."
),
)
request_id: str = Field(
default_factory=lambda: f"{uuid.uuid4().hex}",
description=(
"The request_id related to this request. If the caller does "
"not set it, a uuid.uuid4().hex will be generated. This id is used "
"through out the inference process and return in response."
),
)
normalize: Optional[bool] = None
def to_pooling_params(self):
return PoolingParams(
truncate_prompt_tokens=self.truncate_prompt_tokens, dimensions=self.dimensions, normalize=self.normalize
)
class ChatRewardData(BaseModel):
index: Optional[int] = None
object: str = "reward"
score: List[float]
class ChatRewardResponse(BaseModel):
id: str
object: str = "object"
created: int
model: str
data: List[ChatRewardData]
usage: Optional[UsageInfo] = None