Files
FastDeploy/examples/vision/tracking/pptracking/cpp/infer.cc
ChaoII ba501fd963 [Model] add pptracking model (#357)
* add override mark

* delete some

* recovery

* recovery

* add tracking

* add tracking py_bind and example

* add pptracking

* add pptracking

* iomanip head file

* add opencv_video lib

* add python libs package

Signed-off-by: ChaoII <849453582@qq.com>

* complete comments

Signed-off-by: ChaoII <849453582@qq.com>

* add jdeTracker_ member variable

Signed-off-by: ChaoII <849453582@qq.com>

* add 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* remove kwargs params

Signed-off-by: ChaoII <849453582@qq.com>

* [Doc]update pptracking docs

* delete 'ENABLE_PADDLE_FRONTEND' switch

* add pptracking unit test

* update pptracking unit test

Signed-off-by: ChaoII <849453582@qq.com>

* modify test video file path and remove trt test

* update unit test model url

* remove 'FASTDEPLOY_DECL' macro

Signed-off-by: ChaoII <849453582@qq.com>

* fix build python packages about pptracking on win32

Signed-off-by: ChaoII <849453582@qq.com>

Signed-off-by: ChaoII <849453582@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-26 14:27:55 +08:00

159 lines
4.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
void CpuInfer(const std::string& model_dir, const std::string& video_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto model = fastdeploy::vision::tracking::PPTracking(
model_file, params_file, config_file);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
fastdeploy::vision::MOTResult result;
cv::Mat frame;
int frame_id=0;
cv::VideoCapture capture(video_file);
// according to the time of prediction to calculate fps
float fps= 0.0f;
while (capture.read(frame)) {
if (frame.empty()) {
break;
}
if (!model.Predict(&frame, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// std::cout << result.Str() << std::endl;
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, fps , frame_id);
cv::imshow("mot",out_img);
cv::waitKey(30);
frame_id++;
}
capture.release();
cv::destroyAllWindows();
}
void GpuInfer(const std::string& model_dir, const std::string& video_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::tracking::PPTracking(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
fastdeploy::vision::MOTResult result;
cv::Mat frame;
int frame_id=0;
cv::VideoCapture capture(video_file);
// according to the time of prediction to calculate fps
float fps= 0.0f;
while (capture.read(frame)) {
if (frame.empty()) {
break;
}
if (!model.Predict(&frame, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// std::cout << result.Str() << std::endl;
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, fps , frame_id);
cv::imshow("mot",out_img);
cv::waitKey(30);
frame_id++;
}
capture.release();
cv::destroyAllWindows();
}
void TrtInfer(const std::string& model_dir, const std::string& video_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseGpu();
option.UseTrtBackend();
auto model = fastdeploy::vision::tracking::PPTracking(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
fastdeploy::vision::MOTResult result;
cv::Mat frame;
int frame_id=0;
cv::VideoCapture capture(video_file);
// according to the time of prediction to calculate fps
float fps= 0.0f;
while (capture.read(frame)) {
if (frame.empty()) {
break;
}
if (!model.Predict(&frame, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// std::cout << result.Str() << std::endl;
cv::Mat out_img = fastdeploy::vision::VisMOT(frame, result, fps , frame_id);
cv::imshow("mot",out_img);
cv::waitKey(30);
frame_id++;
}
capture.release();
cv::destroyAllWindows();
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/video run_option, "
"e.g ./infer_model ./pptracking_model_dir ./person.mp4 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend."
<< std::endl;
return -1;
}
if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
TrtInfer(argv[1], argv[2]);
}
return 0;
}