Files
FastDeploy/fastdeploy/scheduler/workers.py
2025-07-19 23:19:27 +08:00

259 lines
7.8 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import functools
import threading
import traceback
from typing import Any, Callable, Dict, List, Optional
from fastdeploy.utils import scheduler_logger
class Task:
"""
A container class representing a unit of work to be processed.
Attributes:
id: Unique identifier for the task
raw: The actual task payload/data
reason: Optional reason/status message for the task
"""
def __init__(self, task_id: str, task: Any, reason: Optional[str] = None):
"""
Initialize a Task instance.
Args:
task_id: Unique identifier for the task
task: The actual task payload/data
reason: Optional reason/status message
"""
self.id = task_id
self.raw = task
self.reason = reason
def __repr__(self) -> str:
return f"task_id:{self.id} reason:{self.reason}"
class Workers:
"""
A thread pool implementation for parallel task processing.
Features:
- Configurable number of worker threads
- Task batching support
- Custom task filtering
- Thread-safe task queue
- Graceful shutdown
"""
def __init__(
self,
name: str,
work: Callable[[List[Task]], Optional[List[Task]]],
max_task_batch_size: int = 1,
task_filters: Optional[List[Callable[[Task], bool]]] = None,
):
"""
Initialize a Workers thread pool.
Args:
name: Identifier for the worker pool
work: The worker function that processes tasks
max_task_batch_size: Maximum tasks processed per batch
task_filters: Optional list of filter functions for task assignment
"""
self.name: str = name
self.work: Callable[[List[Task]], Optional[List[Task]]] = work
self.max_task_batch_size: int = max_task_batch_size
self.task_filters: List[Callable[[Task], bool]] = task_filters
self.mutex = threading.Lock()
self.pool = []
self.tasks_not_empty = threading.Condition(self.mutex)
self.results_not_empty = threading.Condition(self.mutex)
self.tasks: List[Task] = []
self.results: List[Task] = []
self.running_tasks: Dict[int, List[Task]] = dict()
self.not_stop = threading.Condition(self.mutex)
self.stop = False
self.stopped_count = 0
def _get_tasks(self, worker_index: int, filter: Optional[Callable[[Task], bool]] = None):
"""
Retrieve tasks from the queue for a worker thread.
Args:
worker_index: Index of the worker thread
filter: Optional filter function for task selection
Returns:
List of tasks assigned to the worker
"""
if self.stop:
return True
if filter is None:
tasks = self.tasks[: self.max_task_batch_size]
del self.tasks[: self.max_task_batch_size]
self.running_tasks[worker_index] = tasks
return tasks
tasks = []
for i, task in enumerate(self.tasks):
if not filter(task):
continue
tasks.append((i, task))
if len(tasks) >= self.max_task_batch_size:
break
for i, _ in reversed(tasks):
del self.tasks[i]
tasks = [task for _, task in tasks]
self.running_tasks[worker_index] = tasks
return tasks
def _worker(self, worker_index: int):
"""
Worker thread main loop.
Args:
worker_index: Index of the worker thread
"""
with self.mutex:
self.running_tasks[worker_index] = []
task_filter = None
task_filer_size = 0 if self.task_filters is None else len(self.task_filters)
if task_filer_size > 0:
task_filter = self.task_filters[worker_index % task_filer_size]
while True:
with self.tasks_not_empty:
tasks = self.tasks_not_empty.wait_for(functools.partial(self._get_tasks, worker_index, task_filter))
if self.stop:
self.stopped_count += 1
if self.stopped_count == len(self.pool):
self.not_stop.notify_all()
return
results = []
try:
results = self.work(tasks)
except Exception as e:
scheduler_logger.error(f"Worker {self.name} execute error: {e}, traceback: {traceback.format_exc()}")
continue
if results is not None and len(results) > 0:
with self.mutex:
self.results += results
self.results_not_empty.notify_all()
def start(self, workers: int):
"""
Start the worker threads.
Args:
workers: Number of worker threads to start
"""
with self.mutex:
remain = workers - len(self.pool)
if remain <= 0:
return
for _ in range(remain):
index = len(self.pool)
t = threading.Thread(target=self._worker, args=(index,), daemon=True)
t.start()
self.pool.append(t)
def terminate(self):
"""
Gracefully shutdown all worker threads.
Waits for all threads to complete current tasks before stopping.
"""
with self.mutex:
self.stop = True
self.tasks_not_empty.notify_all()
self.results_not_empty.notify_all()
self.not_stop.wait_for(lambda: self.stopped_count == len(self.pool))
self.pool = []
self.tasks = []
self.results = []
self.running_tasks = dict()
self.stop = False
self.stopped_count = 0
def get_results(self, max_size: int, timeout: float) -> List[Task]:
"""
Retrieve processed task results.
Args:
max_size: Maximum number of results to retrieve
timeout: Maximum wait time in seconds
Returns:
List of completed tasks/results
"""
def _get_results():
if self.stop:
return True
results = self.results[:max_size]
del self.results[:max_size]
return results
with self.results_not_empty:
results = self.results_not_empty.wait_for(_get_results, timeout)
if self.stop:
return []
return results
def add_tasks(self, tasks: List[Task], unique: bool = False):
"""
Add new tasks to the worker pool.
Args:
tasks: List of tasks to add
unique: If True, only adds tasks with unique IDs
"""
if len(tasks) == 0:
return
with self.mutex:
if not unique:
self.tasks += tasks
else:
task_set = set([t.id for t in self.tasks])
for _, running in self.running_tasks.items():
task_set.update([t.id for t in running])
for task in tasks:
if task.id in task_set:
continue
self.tasks.append(task)
self.tasks_not_empty.notify_all()