Files
FastDeploy/fastdeploy/model_executor/model_loader/default_loader_v1.py
bukejiyu 62d1c48363 [v1 loader]code style (#4204)
* code style

* update
2025-09-23 19:36:00 +08:00

90 lines
3.1 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
from paddle import nn
from typing_extensions import assert_never
from fastdeploy.config import FDConfig, LoadConfig, ModelConfig
from fastdeploy.model_executor.load_weight_utils import (
get_weight_iterator,
is_weight_cache_enabled,
load_weights_from_cache,
measure_time,
save_model,
)
from fastdeploy.model_executor.model_loader.base_loader import BaseModelLoader
from fastdeploy.model_executor.models.adapters import as_embedding_model
from fastdeploy.model_executor.models.model_base import ModelRegistry
from fastdeploy.platforms import current_platform
class DefaultModelLoaderV1(BaseModelLoader):
"""ModelLoader that can load registered models"""
def __init__(self, load_config: LoadConfig):
super().__init__(load_config)
def download_model(self, model_config: ModelConfig) -> None:
pass
def clean_memory_fragments(self) -> None:
"""clean_memory_fragments"""
if current_platform.is_cuda():
paddle.device.cuda.empty_cache()
paddle.device.synchronize()
@save_model()
@measure_time()
def load_weights(self, model, fd_config: FDConfig, enable_cache: bool = False) -> None:
weights_iterator = get_weight_iterator(fd_config.model_config.model)
if enable_cache:
load_weights_from_cache(model, weights_iterator)
else:
model.load_weights(weights_iterator)
self.clean_memory_fragments()
def load_model(self, fd_config: FDConfig) -> nn.Layer:
architectures = fd_config.model_config.architectures[0]
context = paddle.LazyGuard()
if fd_config.load_config.dynamic_load_weight:
# register rl model
import fastdeploy.rl # noqa
architectures = architectures + "RL"
enable_cache, _, weight_cache_context = is_weight_cache_enabled(fd_config)
with weight_cache_context:
with context:
model_cls = ModelRegistry.get_class(architectures)
convert_type = fd_config.model_config.convert_type
if convert_type == "none":
pass
elif convert_type == "embed":
model_cls = as_embedding_model(model_cls)
else:
assert_never(convert_type)
model = model_cls(fd_config)
model.eval()
# RL model not need set_state_dict
if fd_config.load_config.dynamic_load_weight:
return model
self.load_weights(model, fd_config, enable_cache)
return model