mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-02 15:22:24 +08:00

* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend
821 lines
28 KiB
Python
Executable File
821 lines
28 KiB
Python
Executable File
# # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
# #
|
|
# # Licensed under the Apache License, Version 2.0 (the "License");
|
|
# # you may not use this file except in compliance with the License.
|
|
# # You may obtain a copy of the License at
|
|
# #
|
|
# # http://www.apache.org/licenses/LICENSE-2.0
|
|
# #
|
|
# # Unless required by applicable law or agreed to in writing, software
|
|
# # distributed under the License is distributed on an "AS IS" BASIS,
|
|
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# # See the License for the specific language governing permissions and
|
|
# # limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
import logging
|
|
from .... import FastDeployModel, ModelFormat
|
|
from .... import c_lib_wrap as C
|
|
|
|
|
|
def sort_boxes(boxes):
|
|
return C.vision.ocr.sort_boxes(boxes)
|
|
|
|
|
|
class DBDetectorPreprocessor:
|
|
def __init__(self):
|
|
"""Create a preprocessor for DBDetectorModel
|
|
"""
|
|
self._preprocessor = C.vision.ocr.DBDetectorPreprocessor()
|
|
|
|
def run(self, input_ims):
|
|
"""Preprocess input images for DBDetectorModel
|
|
:param: input_ims: (list of numpy.ndarray) The input image
|
|
:return: pair(list of FDTensor, list of std::array<int, 4>)
|
|
"""
|
|
return self._preprocessor.run(input_ims)
|
|
|
|
@property
|
|
def max_side_len(self):
|
|
return self._preprocessor.max_side_len
|
|
|
|
@max_side_len.setter
|
|
def max_side_len(self, value):
|
|
assert isinstance(
|
|
value, int), "The value to set `max_side_len` must be type of int."
|
|
self._preprocessor.max_side_len = value
|
|
|
|
@property
|
|
def is_scale(self):
|
|
return self._preprocessor.is_scale
|
|
|
|
@is_scale.setter
|
|
def is_scale(self, value):
|
|
assert isinstance(
|
|
value, bool), "The value to set `is_scale` must be type of bool."
|
|
self._preprocessor.is_scale = value
|
|
|
|
@property
|
|
def scale(self):
|
|
return self._preprocessor.scale
|
|
|
|
@scale.setter
|
|
def scale(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `scale` must be type of list."
|
|
self._preprocessor.scale = value
|
|
|
|
@property
|
|
def mean(self):
|
|
return self._preprocessor.mean
|
|
|
|
@mean.setter
|
|
def mean(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `mean` must be type of list."
|
|
self._preprocessor.mean = value
|
|
|
|
|
|
class DBDetectorPostprocessor:
|
|
def __init__(self):
|
|
"""Create a postprocessor for DBDetectorModel
|
|
"""
|
|
self._postprocessor = C.vision.ocr.DBDetectorPostprocessor()
|
|
|
|
def run(self, runtime_results, batch_det_img_info):
|
|
"""Postprocess the runtime results for DBDetectorModel
|
|
:param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime
|
|
:param: batch_det_img_info: (list of std::array<int, 4>)The output of det_preprocessor
|
|
:return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
|
"""
|
|
return self._postprocessor.run(runtime_results, batch_det_img_info)
|
|
|
|
@property
|
|
def det_db_thresh(self):
|
|
return self._postprocessor.det_db_thresh
|
|
|
|
@det_db_thresh.setter
|
|
def det_db_thresh(self, value):
|
|
assert isinstance(
|
|
value,
|
|
float), "The value to set `det_db_thresh` must be type of float."
|
|
self._postprocessor.det_db_thresh = value
|
|
|
|
@property
|
|
def det_db_box_thresh(self):
|
|
return self._postprocessor.det_db_box_thresh
|
|
|
|
@det_db_box_thresh.setter
|
|
def det_db_box_thresh(self, value):
|
|
assert isinstance(
|
|
value, float
|
|
), "The value to set `det_db_box_thresh` must be type of float."
|
|
self._postprocessor.det_db_box_thresh = value
|
|
|
|
@property
|
|
def det_db_unclip_ratio(self):
|
|
return self._postprocessor.det_db_unclip_ratio
|
|
|
|
@det_db_unclip_ratio.setter
|
|
def det_db_unclip_ratio(self, value):
|
|
assert isinstance(
|
|
value, float
|
|
), "The value to set `det_db_unclip_ratio` must be type of float."
|
|
self._postprocessor.det_db_unclip_ratio = value
|
|
|
|
@property
|
|
def det_db_score_mode(self):
|
|
return self._postprocessor.det_db_score_mode
|
|
|
|
@det_db_score_mode.setter
|
|
def det_db_score_mode(self, value):
|
|
assert isinstance(
|
|
value,
|
|
str), "The value to set `det_db_score_mode` must be type of str."
|
|
self._postprocessor.det_db_score_mode = value
|
|
|
|
@property
|
|
def use_dilation(self):
|
|
return self._postprocessor.use_dilation
|
|
|
|
@use_dilation.setter
|
|
def use_dilation(self, value):
|
|
assert isinstance(
|
|
value,
|
|
bool), "The value to set `use_dilation` must be type of bool."
|
|
self._postprocessor.use_dilation = value
|
|
|
|
|
|
class DBDetector(FastDeployModel):
|
|
def __init__(self,
|
|
model_file="",
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.PADDLE):
|
|
"""Load OCR detection model provided by PaddleOCR.
|
|
|
|
:param model_file: (str)Path of model file, e.g ./ch_PP-OCRv3_det_infer/model.pdmodel.
|
|
:param params_file: (str)Path of parameter file, e.g ./ch_PP-OCRv3_det_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU.
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model.
|
|
"""
|
|
super(DBDetector, self).__init__(runtime_option)
|
|
|
|
if (len(model_file) == 0):
|
|
self._model = C.vision.ocr.DBDetector()
|
|
self._runnable = False
|
|
else:
|
|
self._model = C.vision.ocr.DBDetector(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
assert self.initialized, "DBDetector initialize failed."
|
|
self._runnable = True
|
|
|
|
def predict(self, input_image):
|
|
"""Predict an input image
|
|
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:return: boxes
|
|
"""
|
|
if self._runnable:
|
|
return self._model.predict(input_image)
|
|
return False
|
|
|
|
def batch_predict(self, images):
|
|
"""Predict a batch of input image
|
|
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return: batch_boxes
|
|
"""
|
|
if self._runnable:
|
|
return self._model.batch_predict(images)
|
|
return False
|
|
|
|
@property
|
|
def preprocessor(self):
|
|
return self._model.preprocessor
|
|
|
|
@preprocessor.setter
|
|
def preprocessor(self, value):
|
|
self._model.preprocessor = value
|
|
|
|
@property
|
|
def postprocessor(self):
|
|
return self._model.postprocessor
|
|
|
|
@postprocessor.setter
|
|
def postprocessor(self, value):
|
|
self._model.postprocessor = value
|
|
|
|
# Det Preprocessor Property
|
|
@property
|
|
def max_side_len(self):
|
|
return self._model.preprocessor.max_side_len
|
|
|
|
@max_side_len.setter
|
|
def max_side_len(self, value):
|
|
assert isinstance(
|
|
value, int), "The value to set `max_side_len` must be type of int."
|
|
self._model.preprocessor.max_side_len = value
|
|
|
|
@property
|
|
def is_scale(self):
|
|
return self._model.preprocessor.is_scale
|
|
|
|
@is_scale.setter
|
|
def is_scale(self, value):
|
|
assert isinstance(
|
|
value, bool), "The value to set `is_scale` must be type of bool."
|
|
self._model.preprocessor.is_scale = value
|
|
|
|
@property
|
|
def scale(self):
|
|
return self._model.preprocessor.scale
|
|
|
|
@scale.setter
|
|
def scale(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `scale` must be type of list."
|
|
self._model.preprocessor.scale = value
|
|
|
|
@property
|
|
def mean(self):
|
|
return self._model.preprocessor.mean
|
|
|
|
@mean.setter
|
|
def mean(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `mean` must be type of list."
|
|
self._model.preprocessor.mean = value
|
|
|
|
# Det Ppstprocessor Property
|
|
@property
|
|
def det_db_thresh(self):
|
|
return self._model.postprocessor.det_db_thresh
|
|
|
|
@det_db_thresh.setter
|
|
def det_db_thresh(self, value):
|
|
assert isinstance(
|
|
value,
|
|
float), "The value to set `det_db_thresh` must be type of float."
|
|
self._model.postprocessor.det_db_thresh = value
|
|
|
|
@property
|
|
def det_db_box_thresh(self):
|
|
return self._model.postprocessor.det_db_box_thresh
|
|
|
|
@det_db_box_thresh.setter
|
|
def det_db_box_thresh(self, value):
|
|
assert isinstance(
|
|
value, float
|
|
), "The value to set `det_db_box_thresh` must be type of float."
|
|
self._model.postprocessor.det_db_box_thresh = value
|
|
|
|
@property
|
|
def det_db_unclip_ratio(self):
|
|
return self._model.postprocessor.det_db_unclip_ratio
|
|
|
|
@det_db_unclip_ratio.setter
|
|
def det_db_unclip_ratio(self, value):
|
|
assert isinstance(
|
|
value, float
|
|
), "The value to set `det_db_unclip_ratio` must be type of float."
|
|
self._model.postprocessor.det_db_unclip_ratio = value
|
|
|
|
@property
|
|
def det_db_score_mode(self):
|
|
return self._model.postprocessor.det_db_score_mode
|
|
|
|
@det_db_score_mode.setter
|
|
def det_db_score_mode(self, value):
|
|
assert isinstance(
|
|
value,
|
|
str), "The value to set `det_db_score_mode` must be type of str."
|
|
self._model.postprocessor.det_db_score_mode = value
|
|
|
|
@property
|
|
def use_dilation(self):
|
|
return self._model.postprocessor.use_dilation
|
|
|
|
@use_dilation.setter
|
|
def use_dilation(self, value):
|
|
assert isinstance(
|
|
value,
|
|
bool), "The value to set `use_dilation` must be type of bool."
|
|
self._model.postprocessor.use_dilation = value
|
|
|
|
|
|
class ClassifierPreprocessor:
|
|
def __init__(self):
|
|
"""Create a preprocessor for ClassifierModel
|
|
"""
|
|
self._preprocessor = C.vision.ocr.ClassifierPreprocessor()
|
|
|
|
def run(self, input_ims):
|
|
"""Preprocess input images for ClassifierModel
|
|
:param: input_ims: (list of numpy.ndarray)The input image
|
|
:return: list of FDTensor
|
|
"""
|
|
return self._preprocessor.run(input_ims)
|
|
|
|
@property
|
|
def is_scale(self):
|
|
return self._preprocessor.is_scale
|
|
|
|
@is_scale.setter
|
|
def is_scale(self, value):
|
|
assert isinstance(
|
|
value, bool), "The value to set `is_scale` must be type of bool."
|
|
self._preprocessor.is_scale = value
|
|
|
|
@property
|
|
def scale(self):
|
|
return self._preprocessor.scale
|
|
|
|
@scale.setter
|
|
def scale(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `scale` must be type of list."
|
|
self._preprocessor.scale = value
|
|
|
|
@property
|
|
def mean(self):
|
|
return self._preprocessor.mean
|
|
|
|
@mean.setter
|
|
def mean(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `mean` must be type of list."
|
|
self._preprocessor.mean = value
|
|
|
|
@property
|
|
def cls_image_shape(self):
|
|
return self._preprocessor.cls_image_shape
|
|
|
|
@cls_image_shape.setter
|
|
def cls_image_shape(self, value):
|
|
assert isinstance(
|
|
value,
|
|
list), "The value to set `cls_image_shape` must be type of list."
|
|
self._preprocessor.cls_image_shape = value
|
|
|
|
|
|
class ClassifierPostprocessor:
|
|
def __init__(self):
|
|
"""Create a postprocessor for ClassifierModel
|
|
"""
|
|
self._postprocessor = C.vision.ocr.ClassifierPostprocessor()
|
|
|
|
def run(self, runtime_results):
|
|
"""Postprocess the runtime results for ClassifierModel
|
|
:param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime
|
|
:return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
|
"""
|
|
return self._postprocessor.run(runtime_results)
|
|
|
|
@property
|
|
def cls_thresh(self):
|
|
return self._postprocessor.cls_thresh
|
|
|
|
@cls_thresh.setter
|
|
def cls_thresh(self, value):
|
|
assert isinstance(
|
|
value,
|
|
float), "The value to set `cls_thresh` must be type of float."
|
|
self._postprocessor.cls_thresh = value
|
|
|
|
|
|
class Classifier(FastDeployModel):
|
|
def __init__(self,
|
|
model_file="",
|
|
params_file="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.PADDLE):
|
|
"""Load OCR classification model provided by PaddleOCR.
|
|
|
|
:param model_file: (str)Path of model file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel.
|
|
:param params_file: (str)Path of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU.
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model.
|
|
"""
|
|
super(Classifier, self).__init__(runtime_option)
|
|
|
|
if (len(model_file) == 0):
|
|
self._model = C.vision.ocr.Classifier()
|
|
self._runnable = False
|
|
else:
|
|
self._model = C.vision.ocr.Classifier(
|
|
model_file, params_file, self._runtime_option, model_format)
|
|
assert self.initialized, "Classifier initialize failed."
|
|
self._runnable = True
|
|
|
|
def predict(self, input_image):
|
|
"""Predict an input image
|
|
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:return: cls_label, cls_score
|
|
"""
|
|
if self._runnable:
|
|
return self._model.predict(input_image)
|
|
return False
|
|
|
|
def batch_predict(self, images):
|
|
"""Predict a batch of input image
|
|
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return: list of cls_label, list of cls_score
|
|
"""
|
|
if self._runnable:
|
|
return self._model.batch_predict(images)
|
|
return False
|
|
|
|
@property
|
|
def preprocessor(self):
|
|
return self._model.preprocessor
|
|
|
|
@preprocessor.setter
|
|
def preprocessor(self, value):
|
|
self._model.preprocessor = value
|
|
|
|
@property
|
|
def postprocessor(self):
|
|
return self._model.postprocessor
|
|
|
|
@postprocessor.setter
|
|
def postprocessor(self, value):
|
|
self._model.postprocessor = value
|
|
|
|
# Cls Preprocessor Property
|
|
@property
|
|
def is_scale(self):
|
|
return self._model.preprocessor.is_scale
|
|
|
|
@is_scale.setter
|
|
def is_scale(self, value):
|
|
assert isinstance(
|
|
value, bool), "The value to set `is_scale` must be type of bool."
|
|
self._model.preprocessor.is_scale = value
|
|
|
|
@property
|
|
def scale(self):
|
|
return self._model.preprocessor.scale
|
|
|
|
@scale.setter
|
|
def scale(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `scale` must be type of list."
|
|
self._model.preprocessor.scale = value
|
|
|
|
@property
|
|
def mean(self):
|
|
return self._model.preprocessor.mean
|
|
|
|
@mean.setter
|
|
def mean(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `mean` must be type of list."
|
|
self._model.preprocessor.mean = value
|
|
|
|
@property
|
|
def cls_image_shape(self):
|
|
return self._model.preprocessor.cls_image_shape
|
|
|
|
@cls_image_shape.setter
|
|
def cls_image_shape(self, value):
|
|
assert isinstance(
|
|
value,
|
|
list), "The value to set `cls_image_shape` must be type of list."
|
|
self._model.preprocessor.cls_image_shape = value
|
|
|
|
# Cls Postprocessor Property
|
|
@property
|
|
def cls_thresh(self):
|
|
return self._model.postprocessor.cls_thresh
|
|
|
|
@cls_thresh.setter
|
|
def cls_thresh(self, value):
|
|
assert isinstance(
|
|
value,
|
|
float), "The value to set `cls_thresh` must be type of float."
|
|
self._model.postprocessor.cls_thresh = value
|
|
|
|
|
|
class RecognizerPreprocessor:
|
|
def __init__(self):
|
|
"""Create a preprocessor for RecognizerModel
|
|
"""
|
|
self._preprocessor = C.vision.ocr.RecognizerPreprocessor()
|
|
|
|
def run(self, input_ims):
|
|
"""Preprocess input images for RecognizerModel
|
|
:param: input_ims: (list of numpy.ndarray)The input image
|
|
:return: list of FDTensor
|
|
"""
|
|
return self._preprocessor.run(input_ims)
|
|
|
|
@property
|
|
def static_shape(self):
|
|
return self._preprocessor.static_shape
|
|
|
|
@static_shape.setter
|
|
def static_shape(self, value):
|
|
assert isinstance(
|
|
value,
|
|
bool), "The value to set `static_shape` must be type of bool."
|
|
self._preprocessor.static_shape = value
|
|
|
|
@property
|
|
def is_scale(self):
|
|
return self._preprocessor.is_scale
|
|
|
|
@is_scale.setter
|
|
def is_scale(self, value):
|
|
assert isinstance(
|
|
value, bool), "The value to set `is_scale` must be type of bool."
|
|
self._preprocessor.is_scale = value
|
|
|
|
@property
|
|
def scale(self):
|
|
return self._preprocessor.scale
|
|
|
|
@scale.setter
|
|
def scale(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `scale` must be type of list."
|
|
self._preprocessor.scale = value
|
|
|
|
@property
|
|
def mean(self):
|
|
return self._preprocessor.mean
|
|
|
|
@mean.setter
|
|
def mean(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `mean` must be type of list."
|
|
self._preprocessor.mean = value
|
|
|
|
@property
|
|
def rec_image_shape(self):
|
|
return self._preprocessor.rec_image_shape
|
|
|
|
@rec_image_shape.setter
|
|
def rec_image_shape(self, value):
|
|
assert isinstance(
|
|
value,
|
|
list), "The value to set `rec_image_shape` must be type of list."
|
|
self._preprocessor.rec_image_shape = value
|
|
|
|
|
|
class RecognizerPostprocessor:
|
|
def __init__(self, label_path):
|
|
"""Create a postprocessor for RecognizerModel
|
|
:param label_path: (str)Path of label file
|
|
"""
|
|
self._postprocessor = C.vision.ocr.RecognizerPostprocessor(label_path)
|
|
|
|
def run(self, runtime_results):
|
|
"""Postprocess the runtime results for RecognizerModel
|
|
:param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime
|
|
:return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
|
|
"""
|
|
return self._postprocessor.run(runtime_results)
|
|
|
|
|
|
class Recognizer(FastDeployModel):
|
|
def __init__(self,
|
|
model_file="",
|
|
params_file="",
|
|
label_path="",
|
|
runtime_option=None,
|
|
model_format=ModelFormat.PADDLE):
|
|
"""Load OCR recognition model provided by PaddleOCR
|
|
|
|
:param model_file: (str)Path of model file, e.g ./ch_PP-OCRv3_rec_infer/model.pdmodel.
|
|
:param params_file: (str)Path of parameter file, e.g ./ch_PP-OCRv3_rec_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
|
|
:param label_path: (str)Path of label file used by OCR recognition model. e.g ./ppocr_keys_v1.txt
|
|
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU.
|
|
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model.
|
|
"""
|
|
super(Recognizer, self).__init__(runtime_option)
|
|
|
|
if (len(model_file) == 0):
|
|
self._model = C.vision.ocr.Recognizer()
|
|
self._runnable = False
|
|
else:
|
|
self._model = C.vision.ocr.Recognizer(
|
|
model_file, params_file, label_path, self._runtime_option,
|
|
model_format)
|
|
assert self.initialized, "Recognizer initialize failed."
|
|
self._runnable = True
|
|
|
|
def predict(self, input_image):
|
|
"""Predict an input image
|
|
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:return: rec_text, rec_score
|
|
"""
|
|
if self._runnable:
|
|
return self._model.predict(input_image)
|
|
return False
|
|
|
|
def batch_predict(self, images):
|
|
"""Predict a batch of input image
|
|
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return: list of rec_text, list of rec_score
|
|
"""
|
|
if self._runnable:
|
|
return self._model.batch_predict(images)
|
|
return False
|
|
|
|
@property
|
|
def preprocessor(self):
|
|
return self._model.preprocessor
|
|
|
|
@preprocessor.setter
|
|
def preprocessor(self, value):
|
|
self._model.preprocessor = value
|
|
|
|
@property
|
|
def postprocessor(self):
|
|
return self._model.postprocessor
|
|
|
|
@postprocessor.setter
|
|
def postprocessor(self, value):
|
|
self._model.postprocessor = value
|
|
|
|
@property
|
|
def static_shape(self):
|
|
return self._model.preprocessor.static_shape
|
|
|
|
@static_shape.setter
|
|
def static_shape(self, value):
|
|
assert isinstance(
|
|
value,
|
|
bool), "The value to set `static_shape` must be type of bool."
|
|
self._model.preprocessor.static_shape = value
|
|
|
|
@property
|
|
def is_scale(self):
|
|
return self._model.preprocessor.is_scale
|
|
|
|
@is_scale.setter
|
|
def is_scale(self, value):
|
|
assert isinstance(
|
|
value, bool), "The value to set `is_scale` must be type of bool."
|
|
self._model.preprocessor.is_scale = value
|
|
|
|
@property
|
|
def scale(self):
|
|
return self._model.preprocessor.scale
|
|
|
|
@scale.setter
|
|
def scale(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `scale` must be type of list."
|
|
self._model.preprocessor.scale = value
|
|
|
|
@property
|
|
def mean(self):
|
|
return self._model.preprocessor.mean
|
|
|
|
@mean.setter
|
|
def mean(self, value):
|
|
assert isinstance(
|
|
value, list), "The value to set `mean` must be type of list."
|
|
self._model.preprocessor.mean = value
|
|
|
|
@property
|
|
def rec_image_shape(self):
|
|
return self._model.preprocessor.rec_image_shape
|
|
|
|
@rec_image_shape.setter
|
|
def rec_image_shape(self, value):
|
|
assert isinstance(
|
|
value,
|
|
list), "The value to set `rec_image_shape` must be type of list."
|
|
self._model.preprocessor.rec_image_shape = value
|
|
|
|
|
|
class PPOCRv3(FastDeployModel):
|
|
def __init__(self, det_model=None, cls_model=None, rec_model=None):
|
|
"""Consruct a pipeline with text detector, direction classifier and text recognizer models
|
|
|
|
:param det_model: (FastDeployModel) The detection model object created by fastdeploy.vision.ocr.DBDetector.
|
|
:param cls_model: (FastDeployModel) The classification model object created by fastdeploy.vision.ocr.Classifier.
|
|
:param rec_model: (FastDeployModel) The recognition model object created by fastdeploy.vision.ocr.Recognizer.
|
|
"""
|
|
assert det_model is not None and rec_model is not None, "The det_model and rec_model cannot be None."
|
|
if cls_model is None:
|
|
self.system = C.vision.ocr.PPOCRv3(det_model._model,
|
|
rec_model._model)
|
|
else:
|
|
self.system = C.vision.ocr.PPOCRv3(
|
|
det_model._model, cls_model._model, rec_model._model)
|
|
|
|
def predict(self, input_image):
|
|
"""Predict an input image
|
|
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:return: OCRResult
|
|
"""
|
|
return self.system.predict(input_image)
|
|
|
|
def batch_predict(self, images):
|
|
"""Predict a batch of input image
|
|
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return: OCRBatchResult
|
|
"""
|
|
return self.system.batch_predict(images)
|
|
|
|
@property
|
|
def cls_batch_size(self):
|
|
return self.system.cls_batch_size
|
|
|
|
@cls_batch_size.setter
|
|
def cls_batch_size(self, value):
|
|
assert isinstance(
|
|
value,
|
|
int), "The value to set `cls_batch_size` must be type of int."
|
|
self.system.cls_batch_size = value
|
|
|
|
@property
|
|
def rec_batch_size(self):
|
|
return self.system.rec_batch_size
|
|
|
|
@rec_batch_size.setter
|
|
def rec_batch_size(self, value):
|
|
assert isinstance(
|
|
value,
|
|
int), "The value to set `rec_batch_size` must be type of int."
|
|
self.system.rec_batch_size = value
|
|
|
|
|
|
class PPOCRSystemv3(PPOCRv3):
|
|
def __init__(self, det_model=None, cls_model=None, rec_model=None):
|
|
logging.warning(
|
|
"DEPRECATED: fd.vision.ocr.PPOCRSystemv3 is deprecated, "
|
|
"please use fd.vision.ocr.PPOCRv3 instead.")
|
|
super(PPOCRSystemv3, self).__init__(det_model, cls_model, rec_model)
|
|
|
|
def predict(self, input_image):
|
|
return super(PPOCRSystemv3, self).predict(input_image)
|
|
|
|
|
|
class PPOCRv2(FastDeployModel):
|
|
def __init__(self, det_model=None, cls_model=None, rec_model=None):
|
|
"""Consruct a pipeline with text detector, direction classifier and text recognizer models
|
|
|
|
:param det_model: (FastDeployModel) The detection model object created by fastdeploy.vision.ocr.DBDetector.
|
|
:param cls_model: (FastDeployModel) The classification model object created by fastdeploy.vision.ocr.Classifier.
|
|
:param rec_model: (FastDeployModel) The recognition model object created by fastdeploy.vision.ocr.Recognizer.
|
|
"""
|
|
assert det_model is not None and rec_model is not None, "The det_model and rec_model cannot be None."
|
|
if cls_model is None:
|
|
self.system = C.vision.ocr.PPOCRv2(det_model._model,
|
|
rec_model._model)
|
|
else:
|
|
self.system = C.vision.ocr.PPOCRv2(
|
|
det_model._model, cls_model._model, rec_model._model)
|
|
|
|
def predict(self, input_image):
|
|
"""Predict an input image
|
|
|
|
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:return: OCRResult
|
|
"""
|
|
return self.system.predict(input_image)
|
|
|
|
def batch_predict(self, images):
|
|
"""Predict a batch of input image
|
|
:param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
|
|
:return: OCRBatchResult
|
|
"""
|
|
|
|
return self.system.batch_predict(images)
|
|
|
|
@property
|
|
def cls_batch_size(self):
|
|
return self.system.cls_batch_size
|
|
|
|
@cls_batch_size.setter
|
|
def cls_batch_size(self, value):
|
|
assert isinstance(
|
|
value,
|
|
int), "The value to set `cls_batch_size` must be type of int."
|
|
self.system.cls_batch_size = value
|
|
|
|
@property
|
|
def rec_batch_size(self):
|
|
return self.system.rec_batch_size
|
|
|
|
@rec_batch_size.setter
|
|
def rec_batch_size(self, value):
|
|
assert isinstance(
|
|
value,
|
|
int), "The value to set `rec_batch_size` must be type of int."
|
|
self.system.rec_batch_size = value
|
|
|
|
|
|
class PPOCRSystemv2(PPOCRv2):
|
|
def __init__(self, det_model=None, cls_model=None, rec_model=None):
|
|
logging.warning(
|
|
"DEPRECATED: fd.vision.ocr.PPOCRSystemv2 is deprecated, "
|
|
"please use fd.vision.ocr.PPOCRv2 instead.")
|
|
super(PPOCRSystemv2, self).__init__(det_model, cls_model, rec_model)
|
|
|
|
def predict(self, input_image):
|
|
return super(PPOCRSystemv2, self).predict(input_image)
|