mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-03 15:56:49 +08:00

* Add Huawei Ascend NPU deploy through PaddleLite CANN * Add NNAdapter interface for paddlelite * Modify Huawei Ascend Cmake * Update way for compiling Huawei Ascend NPU deployment * remove UseLiteBackend in UseCANN * Support compile python whlee * Change names of nnadapter API * Add nnadapter pybind and remove useless API * Support Python deployment on Huawei Ascend NPU * Add models suppor for ascend * Add PPOCR rec reszie for ascend * fix conflict for ascend * Rename CANN to Ascend * Rename CANN to Ascend * Improve ascend * fix ascend bug * improve ascend docs * improve ascend docs * improve ascend docs * Improve Ascend * Improve Ascend * Move ascend python demo * Imporve ascend * Improve ascend * Improve ascend * Improve ascend * Improve ascend * Imporve ascend * Imporve ascend * Improve ascend
48 lines
1.7 KiB
C++
48 lines
1.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
namespace ocr {
|
|
/*! @brief Preprocessor object for PaddleClas serials model.
|
|
*/
|
|
class FASTDEPLOY_DECL RecognizerPreprocessor {
|
|
public:
|
|
/** \brief Process the input image and prepare input tensors for runtime
|
|
*
|
|
* \param[in] images The input data list, all the elements are FDMat
|
|
* \param[in] outputs The output tensors which will be fed into runtime
|
|
* \return true if the preprocess successed, otherwise false
|
|
*/
|
|
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
|
|
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
|
size_t start_index, size_t end_index,
|
|
const std::vector<int>& indices);
|
|
|
|
std::vector<int> rec_image_shape_ = {3, 48, 320};
|
|
std::vector<float> mean_ = {0.5f, 0.5f, 0.5f};
|
|
std::vector<float> scale_ = {0.5f, 0.5f, 0.5f};
|
|
bool is_scale_ = true;
|
|
bool static_shape_ = false;
|
|
};
|
|
|
|
} // namespace ocr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|