Files
FastDeploy/fastdeploy/backends/lite/lite_backend.cc
yunyaoXYY d45382e3cc [Backend] Add Huawei Ascend NPU deploy using PaddleLite CANN. (#757)
* Add Huawei Ascend NPU deploy through PaddleLite CANN

* Add NNAdapter interface for paddlelite

* Modify Huawei Ascend Cmake

* Update way for compiling Huawei Ascend NPU deployment

* remove UseLiteBackend in UseCANN

* Support compile python whlee

* Change names of nnadapter API

* Add nnadapter pybind and remove useless API

* Support Python deployment on Huawei Ascend NPU

* Add models suppor for ascend

* Add PPOCR rec reszie for ascend

* fix conflict for ascend

* Rename CANN to Ascend

* Rename CANN to Ascend

* Improve ascend

* fix ascend bug

* improve ascend docs

* improve ascend docs

* improve ascend docs

* Improve Ascend

* Improve Ascend

* Move ascend python demo

* Imporve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Improve ascend

* Imporve ascend

* Imporve ascend

* Improve ascend
2022-12-26 10:18:34 +08:00

317 lines
12 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/backends/lite/lite_backend.h"
#include <cstring>
namespace fastdeploy {
// Convert data type from paddle lite to fastdeploy
FDDataType LiteDataTypeToFD(const paddle::lite_api::PrecisionType& dtype) {
if (dtype == paddle::lite_api::PrecisionType::kFloat) {
return FDDataType::FP32;
} else if (dtype == paddle::lite_api::PrecisionType::kInt8) {
return FDDataType::INT8;
} else if (dtype == paddle::lite_api::PrecisionType::kInt32) {
return FDDataType::INT32;
} else if (dtype == paddle::lite_api::PrecisionType::kInt64) {
return FDDataType::INT64;
} else if (dtype == paddle::lite_api::PrecisionType::kInt16) {
return FDDataType::INT16;
} else if (dtype == paddle::lite_api::PrecisionType::kUInt8) {
return FDDataType::UINT8;
} else if (dtype == paddle::lite_api::PrecisionType::kFP64) {
return FDDataType::FP64;
}
FDASSERT(false, "Unexpected data type of %d.", dtype);
return FDDataType::FP32;
}
void LiteBackend::BuildOption(const LiteBackendOption& option) {
option_ = option;
std::vector<paddle::lite_api::Place> valid_places;
if (option_.enable_int8) {
if(option_.enable_xpu) {
valid_places.push_back(
paddle::lite_api::Place{TARGET(kXPU), PRECISION(kInt8)});
} else {
valid_places.push_back(
paddle::lite_api::Place{TARGET(kARM), PRECISION(kInt8)});
}
FDINFO << "Lite::Backend enable_int8 option is ON ! Lite::Backend will "
<< "inference with int8 precision!" << std::endl;
}
if (option_.enable_fp16) {
if(option_.enable_xpu){
valid_places.push_back(
paddle::lite_api::Place{TARGET(kXPU), PRECISION(kFP16)});
} else {
paddle::lite_api::MobileConfig check_fp16_config;
// Determine whether the device supports the FP16
// instruction set (or whether it is an arm device
// of the armv8.2 architecture)
supported_fp16_ = check_fp16_config.check_fp16_valid();
if (supported_fp16_) {
valid_places.push_back(
paddle::lite_api::Place{TARGET(kARM), PRECISION(kFP16)});
FDINFO << "The device supports FP16, Lite::Backend will inference with FP16 precision." << std::endl;
} else {
FDWARNING << "The device doesn't support FP16, will fallback to FP32.";
}
}
}
if (!option_.nnadapter_subgraph_partition_config_path.empty()) {
std::vector<char> nnadapter_subgraph_partition_config_buffer;
if (ReadFile(option_.nnadapter_subgraph_partition_config_path, &nnadapter_subgraph_partition_config_buffer, false)) {
if (!nnadapter_subgraph_partition_config_buffer.empty()) {
std::string nnadapter_subgraph_partition_config_string(nnadapter_subgraph_partition_config_buffer.data(), nnadapter_subgraph_partition_config_buffer.size());
config_.set_nnadapter_subgraph_partition_config_buffer(nnadapter_subgraph_partition_config_string);
}
}
}
if(option_.enable_timvx) {
config_.set_nnadapter_device_names({"verisilicon_timvx"});
valid_places.push_back(
paddle::lite_api::Place{TARGET(kNNAdapter), PRECISION(kInt8)});
valid_places.push_back(
paddle::lite_api::Place{TARGET(kNNAdapter), PRECISION(kFloat)});
valid_places.push_back(
paddle::lite_api::Place{TARGET(kARM), PRECISION(kInt8)});
}
if(option_.enable_ascend){
if(option_.nnadapter_device_names.empty()){
config_.set_nnadapter_device_names({"huawei_ascend_npu"});
} else {
config_.set_nnadapter_device_names(option_.nnadapter_device_names);
}
if(!option_.nnadapter_context_properties.empty()){
config_.set_nnadapter_context_properties(option_.nnadapter_context_properties);
}
if(!option_.nnadapter_model_cache_dir.empty()){
config_.set_nnadapter_model_cache_dir(option_.nnadapter_model_cache_dir);
}
if(!option_.nnadapter_mixed_precision_quantization_config_path.empty()){
config_.set_nnadapter_mixed_precision_quantization_config_path(
option_.nnadapter_mixed_precision_quantization_config_path
);
}
if(!option_.nnadapter_subgraph_partition_config_path.empty()){
config_.set_nnadapter_subgraph_partition_config_path(
option_.nnadapter_subgraph_partition_config_path
);
}
valid_places.push_back(
paddle::lite_api::Place{TARGET(kNNAdapter), PRECISION(kInt8)});
valid_places.push_back(
paddle::lite_api::Place{TARGET(kNNAdapter), PRECISION(kFloat)});
valid_places.push_back(
paddle::lite_api::Place{TARGET(kARM), PRECISION(kInt8)});
}
if(option_.enable_xpu){
valid_places.push_back(
paddle::lite_api::Place{TARGET(kXPU), PRECISION(kFloat)});
valid_places.push_back(
paddle::lite_api::Place{TARGET(kX86), PRECISION(kFloat)});
config_.set_xpu_dev_per_thread(option_.device_id);
config_.set_xpu_workspace_l3_size_per_thread(option_.xpu_l3_workspace_size);
config_.set_xpu_l3_cache_method(option_.xpu_l3_workspace_size, option_.xpu_locked);
config_.set_xpu_conv_autotune(option_.xpu_autotune, option_.xpu_autotune_file);
config_.set_xpu_multi_encoder_method(option_.xpu_precision, option_.xpu_adaptive_seqlen);
if (option_.xpu_enable_multi_stream) {
config_.enable_xpu_multi_stream();
}
} else {
valid_places.push_back(
paddle::lite_api::Place{TARGET(kARM), PRECISION(kFloat)});
}
config_.set_valid_places(valid_places);
if (option_.threads > 0) {
config_.set_threads(option_.threads);
}
if (option_.power_mode > 0) {
config_.set_power_mode(
static_cast<paddle::lite_api::PowerMode>(option_.power_mode));
}
}
bool LiteBackend::ReadFile(const std::string& filename,
std::vector<char>* contents,
const bool binary) {
FILE *fp = fopen(filename.c_str(), binary ? "rb" : "r");
if (!fp){
FDERROR << "Cannot open file " << filename << "." << std::endl;
return false;
}
fseek(fp, 0, SEEK_END);
size_t size = ftell(fp);
fseek(fp, 0, SEEK_SET);
contents->clear();
contents->resize(size);
size_t offset = 0;
char *ptr = reinterpret_cast<char *>(&(contents->at(0)));
while (offset < size) {
size_t already_read = fread(ptr, 1, size - offset, fp);
offset += already_read;
ptr += already_read;
}
fclose(fp);
return true;
}
bool LiteBackend::InitFromPaddle(const std::string& model_file,
const std::string& params_file,
const LiteBackendOption& option) {
if (initialized_) {
FDERROR << "LiteBackend is already initialized, cannot initialize again."
<< std::endl;
return false;
}
config_.set_model_file(model_file);
config_.set_param_file(params_file);
BuildOption(option);
predictor_ =
paddle::lite_api::CreatePaddlePredictor<paddle::lite_api::CxxConfig>(
config_);
if (option_.optimized_model_dir != "") {
FDINFO << "Optimzed model dir is not empty, will save optimized model to: "
<< option_.optimized_model_dir << std::endl;
predictor_->SaveOptimizedModel(option_.optimized_model_dir,
paddle::lite_api::LiteModelType::kNaiveBuffer);
}
inputs_desc_.clear();
outputs_desc_.clear();
inputs_order_.clear();
std::vector<std::string> input_names = predictor_->GetInputNames();
std::vector<std::string> output_names = predictor_->GetOutputNames();
for (size_t i = 0; i < input_names.size(); ++i) {
inputs_order_[input_names[i]] = i;
TensorInfo info;
auto tensor = predictor_->GetInput(i);
auto shape = tensor->shape();
info.shape.assign(shape.begin(), shape.end());
info.name = input_names[i];
info.dtype = LiteDataTypeToFD(tensor->precision());
inputs_desc_.emplace_back(info);
}
for (size_t i = 0; i < output_names.size(); ++i) {
TensorInfo info;
auto tensor = predictor_->GetOutput(i);
auto shape = tensor->shape();
info.shape.assign(shape.begin(), shape.end());
info.name = output_names[i];
if(!option_.enable_xpu){
info.dtype = LiteDataTypeToFD(tensor->precision());
}
outputs_desc_.emplace_back(info);
}
initialized_ = true;
return true;
}
TensorInfo LiteBackend::GetInputInfo(int index) {
FDASSERT(index < NumInputs(),
"The index: %d should less than the number of inputs: %d.", index,
NumInputs());
return inputs_desc_[index];
}
std::vector<TensorInfo> LiteBackend::GetInputInfos() { return inputs_desc_; }
TensorInfo LiteBackend::GetOutputInfo(int index) {
FDASSERT(index < NumOutputs(),
"The index: %d should less than the number of outputs %d.", index,
NumOutputs());
return outputs_desc_[index];
}
std::vector<TensorInfo> LiteBackend::GetOutputInfos() { return outputs_desc_; }
bool LiteBackend::Infer(std::vector<FDTensor>& inputs,
std::vector<FDTensor>* outputs,
bool copy_to_fd) {
if (inputs.size() != inputs_desc_.size()) {
FDERROR << "[LiteBackend] Size of inputs(" << inputs.size()
<< ") should keep same with the inputs of this model("
<< inputs_desc_.size() << ")." << std::endl;
return false;
}
for (size_t i = 0; i < inputs.size(); ++i) {
auto iter = inputs_order_.find(inputs[i].name);
if (iter == inputs_order_.end()) {
FDERROR << "Cannot find input with name:" << inputs[i].name
<< " in loaded model." << std::endl;
return false;
}
auto tensor = predictor_->GetInput(iter->second);
// Adjust dims only, allocate lazy.
tensor->Resize(inputs[i].shape);
if (inputs[i].dtype == FDDataType::FP32) {
tensor->CopyFromCpu<float, paddle::lite_api::TargetType::kHost>(
reinterpret_cast<const float*>(const_cast<void*>(
inputs[i].CpuData())));
} else if (inputs[i].dtype == FDDataType::INT32) {
tensor->CopyFromCpu<int, paddle::lite_api::TargetType::kHost>(
reinterpret_cast<const int*>(const_cast<void*>(
inputs[i].CpuData())));
} else if (inputs[i].dtype == FDDataType::INT8) {
tensor->CopyFromCpu<int8_t, paddle::lite_api::TargetType::kHost>(
reinterpret_cast<const int8_t*>(const_cast<void*>(
inputs[i].CpuData())));
} else if (inputs[i].dtype == FDDataType::UINT8) {
tensor->CopyFromCpu<uint8_t, paddle::lite_api::TargetType::kHost>(
reinterpret_cast<const uint8_t*>(const_cast<void*>(
inputs[i].CpuData())));
} else if (inputs[i].dtype == FDDataType::INT64) {
#if (defined(__aarch64__) || defined(__x86_64__) || defined(_M_X64) || defined(_M_ARM64))
tensor->CopyFromCpu<int64_t, paddle::lite_api::TargetType::kHost>(
reinterpret_cast<const int64_t*>(const_cast<void*>(
inputs[i].CpuData())));
#else
FDASSERT(false, "FDDataType::INT64 is not support for x86/armv7 now!");
#endif
} else {
FDASSERT(false, "Unexpected data type of %d.", inputs[i].dtype);
}
}
predictor_->Run();
outputs->resize(outputs_desc_.size());
for (size_t i = 0; i < outputs_desc_.size(); ++i) {
auto tensor = predictor_->GetOutput(i);
if(outputs_desc_[i].dtype != LiteDataTypeToFD(tensor->precision())){
outputs_desc_[i].dtype = LiteDataTypeToFD(tensor->precision());
}
(*outputs)[i].Resize(tensor->shape(), outputs_desc_[i].dtype,
outputs_desc_[i].name);
memcpy((*outputs)[i].MutableData(), tensor->data<void>(),
(*outputs)[i].Nbytes());
}
return true;
}
} // namespace fastdeploy