mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* Add sort function * Add isfinite function * upgrade isinf isnan * Add Scalar to FDTensor * Add floor, ceil function * add cast functions * Update out_tmp * Update quantile * add gather scatter along axis * finish quantile function * Add quantile unittest * refresh code style for test source code * Add comments * Add full function * Add scalar to fd tensor * Add full unittest * Add functions headers * move fdtensor operators to fastdeploy namespace
90 lines
2.8 KiB
C++
90 lines
2.8 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/function/elementwise.h"
|
|
#include "fastdeploy/function/eigen.h"
|
|
#include "fastdeploy/function/elementwise_base.h"
|
|
#include "fastdeploy/function/elementwise_functor.h"
|
|
#include "fastdeploy/utils/utils.h"
|
|
#include <algorithm>
|
|
|
|
namespace fastdeploy {
|
|
namespace function {
|
|
|
|
DEFINE_ELEMENTWISE_OP(Add);
|
|
DEFINE_ELEMENTWISE_OP(Multiply);
|
|
DEFINE_ELEMENTWISE_OP(Subtract);
|
|
DEFINE_ELEMENTWISE_OP(Divide);
|
|
|
|
void Add(const FDTensor& x, const FDTensor& y, FDTensor* out) {
|
|
FD_VISIT_ALL_TYPES(x.dtype, "AddRawKernel",
|
|
([&] { AddRawKernel<data_t>()(x, y, -1, out); }));
|
|
}
|
|
|
|
void Subtract(const FDTensor& x, const FDTensor& y, FDTensor* out) {
|
|
FD_VISIT_ALL_TYPES(x.dtype, "SubtractRawKernel",
|
|
([&] { SubtractRawKernel<data_t>()(x, y, -1, out); }));
|
|
}
|
|
|
|
void Multiply(const FDTensor& x, const FDTensor& y, FDTensor* out) {
|
|
FD_VISIT_ALL_TYPES(x.dtype, "MultiplyRawKernel",
|
|
([&] { MultiplyRawKernel<data_t>()(x, y, -1, out); }));
|
|
}
|
|
|
|
void Divide(const FDTensor& x, const FDTensor& y, FDTensor* out) {
|
|
FD_VISIT_ALL_TYPES(x.dtype, "DivideRawKernel",
|
|
([&] { DivideRawKernel<data_t>()(x, y, -1, out); }));
|
|
}
|
|
|
|
template <typename T> struct MaximumRawKernel {
|
|
void operator()(const FDTensor& x, const FDTensor& y, int axis,
|
|
FDTensor* out) {
|
|
ElementwiseCompute<MaximumFunctor<T>, T>(x, y, axis, MaximumFunctor<T>(),
|
|
out);
|
|
}
|
|
};
|
|
|
|
void Maximum(const FDTensor& x, const FDTensor& y, FDTensor* out) {
|
|
FD_VISIT_ALL_TYPES(x.dtype, "MaximumRawKernel",
|
|
([&] { MaximumRawKernel<data_t>()(x, y, -1, out); }));
|
|
}
|
|
|
|
} // namespace function
|
|
|
|
FDTensor operator+(const FDTensor& x, const FDTensor& y) {
|
|
FDTensor out;
|
|
function::Add(x, y, &out);
|
|
return out;
|
|
}
|
|
|
|
FDTensor operator-(const FDTensor& x, const FDTensor& y) {
|
|
FDTensor out;
|
|
function::Subtract(x, y, &out);
|
|
return out;
|
|
}
|
|
|
|
FDTensor operator*(const FDTensor& x, const FDTensor& y) {
|
|
FDTensor out;
|
|
function::Multiply(x, y, &out);
|
|
return out;
|
|
}
|
|
|
|
FDTensor operator/(const FDTensor& x, const FDTensor& y) {
|
|
FDTensor out;
|
|
function::Divide(x, y, &out);
|
|
return out;
|
|
}
|
|
|
|
} // namespace fastdeploy
|