mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-30 19:36:42 +08:00
* update .gitignore * Added checking for cmake include dir * fixed missing trt_backend option bug when init from trt * remove un-need data layout and add pre-check for dtype * changed RGB2BRG to BGR2RGB in ppcls model * add model_zoo yolov6 c++/python demo * fixed CMakeLists.txt typos * update yolov6 cpp/README.md * add yolox c++/pybind and model_zoo demo * move some helpers to private * fixed CMakeLists.txt typos * add normalize with alpha and beta * add version notes for yolov5/yolov6/yolox * add copyright to yolov5.cc * revert normalize * fixed some bugs in yolox * Add RetinaFace Model support * fixed retinaface/api.md typos
YOLOv5Face部署示例
当前支持模型版本为:YOLOv5Face CommitID:4fd1ead
本文档说明如何进行YOLOv5Face的快速部署推理。本目录结构如下
.
├── cpp # C++ 代码目录
│ ├── CMakeLists.txt # C++ 代码编译CMakeLists文件
│ ├── README.md # C++ 代码编译部署文档
│ └── yolov5face.cc # C++ 示例代码
├── api.md # API 说明文档
├── README.md # YOLOv5Face 部署文档
└── yolov5face.py # Python示例代码
获取ONNX文件
访问YOLOv5Face官方github库,按照指引下载安装,下载yolov5s-face.pt 模型,利用 export.py 得到onnx格式文件。
-
下载yolov5face模型文件
Link: https://pan.baidu.com/s/1fyzLxZYx7Ja1_PCIWRhxbw Link: eq0q https://drive.google.com/file/d/1zxaHeLDyID9YU4-hqK7KNepXIwbTkRIO/view?usp=sharing -
导出onnx格式文件
PYTHONPATH=. python export.py --weights weights/yolov5s-face.pt --img_size 640 640 --batch_size 1 -
onnx模型简化(可选)
onnxsim yolov5s-face.onnx yolov5s-face.onnx -
移动onnx文件到model_zoo/yolov5face的目录
cp PATH/TO/yolov5s-face.onnx PATH/TO/model_zoo/vision/yolov5face/
准备测试图片
准备一张包含人脸的测试图片,命名为test.jpg,并拷贝到可执行文件所在的目录
安装FastDeploy
使用如下命令安装FastDeploy,注意到此处安装的是vision-cpu,也可根据需求安装vision-gpu
# 安装fastdeploy-python工具
pip install fastdeploy-python
# 安装vision-cpu模块
fastdeploy install vision-cpu
Python部署
执行如下代码即会自动下载YOLOv5Face模型和测试图片
python yolov5face.py
执行完成后会将可视化结果保存在本地vis_result.jpg,同时输出检测结果如下
FaceDetectionResult: [xmin, ymin, xmax, ymax, score, (x, y) x 5]
749.575256,375.122162, 775.008850, 407.858215, 0.851824, (756.933838,388.423157), (767.810974,387.932922), (762.617065,394.212341), (758.053101,399.073639), (767.370300,398.769470)
897.833862,380.372864, 924.725281, 409.566803, 0.847505, (903.757202,390.221741), (914.575867,389.495911), (908.998901,395.983307), (905.803223,400.871429), (914.674438,400.268066)
281.558197,367.739349, 305.474701, 397.860535, 0.840915, (287.018768,379.771088), (297.285004,378.755280), (292.057831,385.207367), (289.110962,390.010437), (297.535339,389.412048)
132.922104,368.507263, 159.098541, 402.777283, 0.840232, (140.632492,382.361633), (151.900864,380.966156), (146.869186,388.505066), (141.930420,393.724670), (151.734604,392.808197)
699.379700,306.743256, 723.219421, 336.533295, 0.840228, (705.688843,319.133301), (715.784668,318.449524), (711.107300,324.416016), (707.236633,328.671936), (716.088623,328.151794)
# ...