Files
FastDeploy/custom_ops/gpu_ops/flash_mask_attn/mainloop_attn.hpp
yangjianfengo1 40f7f3e0d8 [New Feature] fa3 支持flash mask (#3184)
* 支持flash mask

* 修改test_flash_mask

* 修改test.sh
2025-08-05 12:20:48 +08:00

432 lines
18 KiB
C++

/******************************************************************************
* Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
******************************************************************************/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>
#include "cutlass/pipeline/pipeline.hpp"
#include "cute/tensor.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "utils.hpp"
using namespace cute;
template <typename Ktraits>
struct CollectiveMainloopAttn {
using Element = typename Ktraits::Element;
using TileShape_MNK = typename Ktraits::TileShape_MNK;
using ClusterShape = typename Ktraits::ClusterShape_MNK;
static constexpr int kStages = Ktraits::kStages;
static constexpr int kHeadDim = Ktraits::kHeadDim;
static constexpr int kBlockM = Ktraits::kBlockM;
static constexpr int kBlockN = Ktraits::kBlockN;
static constexpr bool NeedMask = Ktraits::NeedMask;
using ShapeT = cute::Shape<int32_t, int32_t, int32_t>;
using StrideT = cute::Shape<int32_t, _1, int32_t>;
using LayoutT = cute::Layout<ShapeT, StrideT>;
using GmemTiledCopyQ = cute::SM90_TMA_LOAD;
using GmemTiledCopyKV = decltype(cutlass::gemm::collective::detail::sm90_cluster_shape_to_tma_atom(shape<0>(ClusterShape{})));
using GmemTiledCopyO = typename Ktraits::GmemTiledCopyO;
using SmemLayoutAtomQ = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutQ = decltype(tile_to_shape(SmemLayoutAtomQ{}, select<0, 2>(TileShape_MNK{})));
using SmemLayoutAtomK = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
decltype(cute::get<1>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
using SmemLayoutK =
decltype(tile_to_shape(SmemLayoutAtomK{},
make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
using SmemLayoutV = SmemLayoutK;
// Note this is the transpose in terms of the view, not in terms of memory.
using SmemLayoutVt =
decltype(cute::composition(SmemLayoutV{},
make_layout(make_shape(get<2>(TileShape_MNK{}), get<1>(TileShape_MNK{}), Int<kStages>{}),
make_stride(get<1>(TileShape_MNK{}), _1{}, Int<size(SmemLayoutV{}(_, _, _0{}))>{}))));
using SmemLayoutO = typename Ktraits::SmemLayoutO;
using SmemCopyAtomO = typename Ktraits::SmemCopyAtomO;
using TMA_Q = decltype(make_tma_copy(
GmemTiledCopyQ{},
make_tensor(
make_gmem_ptr(static_cast<Element const*>(nullptr)),
repeat_like(StrideT{}, int32_t(0)),
StrideT{}
),
SmemLayoutQ{},
select<0, 2>(TileShape_MNK{}),
_1{})); // no mcast for Q
using TMA_KV = decltype(make_tma_copy(
GmemTiledCopyKV{},
make_tensor(
make_gmem_ptr(static_cast<Element const*>(nullptr)),
repeat_like(StrideT{}, int32_t(0)),
StrideT{}
),
take<0, 2>(SmemLayoutK{}),
select<1, 2>(TileShape_MNK{}),
size<0>(ClusterShape{}))); // mcast along M mode for this N load, if any
static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{});
using MainloopPipeline = typename Ktraits::MainloopPipeline;
using PipelineParams = typename MainloopPipeline::Params;
using PipelineState = typename MainloopPipeline::PipelineState;
// Set the bytes transferred in this TMA transaction (may involve multiple issues)
static constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size(SmemLayoutQ{}) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size(take<0, 2>(SmemLayoutK{})) * cutlass::sizeof_bits_v<Element> / 8);
static constexpr bool UseSchedulerBarrier = kHeadDim <= 128;
// Host side kernel arguments
struct Arguments {
Element const* ptr_Q;
LayoutT layout_Q;
Element const* ptr_K;
LayoutT layout_K;
Element const* ptr_V;
LayoutT layout_V;
float const softmax_scale_log2;
};
// Device side kernel params
struct Params {
LayoutT layout_Q;
LayoutT layout_K;
LayoutT layout_V;
cutlass::FastDivmod qhead_per_khead_divmod;
TMA_Q tma_load_Q;
TMA_KV tma_load_K, tma_load_V;
float const softmax_scale_log2;
};
static Params
to_underlying_arguments(Arguments const& args) {
Tensor mQ = make_tensor(make_gmem_ptr(args.ptr_Q), args.layout_Q);
TMA_Q tma_load_Q = make_tma_copy(
GmemTiledCopyQ{},
mQ,
SmemLayoutQ{},
select<0, 2>(TileShape_MNK{}),
_1{});
Tensor mK = make_tensor(make_gmem_ptr(args.ptr_K), args.layout_K);
TMA_KV tma_load_K = make_tma_copy(
GmemTiledCopyKV{},
mK,
SmemLayoutK{}(_, _, _0{}),
select<1, 2>(TileShape_MNK{}),
size<0>(ClusterShape{})); // mcast along M mode for this N load, if any
Tensor mV = make_tensor(make_gmem_ptr(args.ptr_V), args.layout_V);
TMA_KV tma_load_V = make_tma_copy(
GmemTiledCopyKV{},
mV,
SmemLayoutV{}(_, _, _0{}),
select<1, 2>(TileShape_MNK{}),
size<0>(ClusterShape{})); // mcast along M mode for this N load, if any
return {args.layout_Q, args.layout_K, args.layout_V,
cutlass::FastDivmod(cute::ceil_div(get<2>(args.layout_Q.shape()), get<2>(args.layout_K.shape()))),
tma_load_Q, tma_load_K, tma_load_V,
args.softmax_scale_log2};
}
/// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
CUTLASS_DEVICE
static void prefetch_tma_descriptors(Params const& mainloop_params) {
cute::prefetch_tma_descriptor(mainloop_params.tma_load_Q.get_tma_descriptor());
cute::prefetch_tma_descriptor(mainloop_params.tma_load_K.get_tma_descriptor());
cute::prefetch_tma_descriptor(mainloop_params.tma_load_V.get_tma_descriptor());
}
template <typename MTensor, typename Shape>
CUTLASS_DEVICE auto get_local_tile_tensor(
const MTensor &m_tensor,
const Shape &tile_shape,
const int *cu_seq_len,
const int bidh,
const int bidb,
const int actual_seq_len) const {
auto g_offset = local_tile(
m_tensor(_, _, bidh),
cute::make_shape(1, get<1>(tile_shape)),
make_coord(cu_seq_len[bidb], _0{}));
auto g_sequence = make_tensor(
g_offset.data(),
make_layout(
cute::make_shape(actual_seq_len, get<1>(tile_shape)),
g_offset.stride()
));
auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_, _0{}));
return g_tensor;
}
template <typename SharedStorage>
CUTLASS_DEVICE void
load(Params const& mainloop_params,
MainloopPipeline pipeline_k,
MainloopPipeline pipeline_v,
PipelineState& smem_pipe_write_k,
PipelineState& smem_pipe_write_v,
SharedStorage &shared_storage,
const int n_block_max,
const int m_block,
const int bidh,
const int bidb,
const int *cu_seq_q,
const int *cu_seq_k,
const int seq_len_q,
const int seq_len_k) {
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_v.data()), SmemLayoutV{});
Tensor mQ = mainloop_params.tma_load_Q.get_tma_tensor(mainloop_params.layout_Q.shape());
Tensor mK = mainloop_params.tma_load_K.get_tma_tensor(mainloop_params.layout_K.shape());
Tensor mV = mainloop_params.tma_load_V.get_tma_tensor(mainloop_params.layout_V.shape());
int bidh_kv = mainloop_params.qhead_per_khead_divmod.divide(bidh);
Tensor gQ = get_local_tile_tensor(
mQ, select<0, 2>(TileShape_MNK{}), cu_seq_q, bidh, bidb, seq_len_q)(_, _, m_block);
Tensor gK = get_local_tile_tensor(
mK, select<1, 2>(TileShape_MNK{}), cu_seq_k, bidh_kv, bidb, seq_len_k);
Tensor gV = get_local_tile_tensor(
mV, select<1, 2>(TileShape_MNK{}), cu_seq_k, bidh_kv, bidb, seq_len_k);
Tensor sQ_x = make_tensor(sQ.data(), make_layout(sQ.layout(), Layout<_1>{}));
Tensor gQ_x = make_tensor(gQ.data(), make_layout(gQ.layout(), Layout<_1>{}));
auto [tQgQ, tQsQ] = tma_partition(mainloop_params.tma_load_Q, _0{}, Layout<_1>{},group_modes<0, 2>(sQ_x), group_modes<0, 2>(gQ_x));
auto [tKgK, tKsK] = tma_partition(mainloop_params.tma_load_K, _0{}, Layout<_1>{},group_modes<0, 2>(sK), group_modes<0, 2>(gK));
auto [tVgV, tVsV] = tma_partition(mainloop_params.tma_load_V, _0{}, Layout<_1>{},group_modes<0, 2>(sV), group_modes<0, 2>(gV));
uint16_t mcast_mask_kv = 0;
int n_block = n_block_max - 1;
int lane_predicate = cute::elect_one_sync();
if (lane_predicate) {
shared_storage.barrier_Q.arrive_and_expect_tx(TmaTransactionBytesQ);
copy(mainloop_params.tma_load_Q.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_Q), 0 /*mcast_mask*/), tQgQ, tQsQ);
}
if (lane_predicate) {
pipeline_k.producer_acquire(smem_pipe_write_k);
copy(mainloop_params.tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write_k), mcast_mask_kv),
tKgK(_, n_block), tKsK(_, smem_pipe_write_k.index()));
++smem_pipe_write_k;
}
if (lane_predicate) {
#pragma unroll 2
for (; n_block > 0; --n_block) {
pipeline_k.producer_acquire(smem_pipe_write_k);
copy(mainloop_params.tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write_k), mcast_mask_kv),
tKgK(_, n_block - 1), tKsK(_, smem_pipe_write_k.index()));
++smem_pipe_write_k;
pipeline_v.producer_acquire(smem_pipe_write_v);
copy(mainloop_params.tma_load_V.with(*pipeline_v.producer_get_barrier(smem_pipe_write_v), mcast_mask_kv),
tVgV(_, n_block), tVsV(_, smem_pipe_write_v.index()));
++smem_pipe_write_v;
}
}
if (lane_predicate) {
pipeline_v.producer_acquire(smem_pipe_write_v);
copy(mainloop_params.tma_load_V.with(*pipeline_v.producer_get_barrier(smem_pipe_write_v), mcast_mask_kv),
tVgV(_, n_block), tVsV(_, smem_pipe_write_v.index()));
++smem_pipe_write_v;
}
}
template <typename SharedStorage, typename FrgTensorO, typename Softmax>
CUTLASS_DEVICE void
mma(Params const& mainloop_params,
MainloopPipeline pipeline_k,
MainloopPipeline pipeline_v,
PipelineState& smem_pipe_read_k,
PipelineState& smem_pipe_read_v,
FrgTensorO& tOrO,
Softmax& softmax,
const int *mask,
const int n_block_max,
const int thread_idx,
const int m_block,
const int seq_len_q,
const int seq_len_k,
SharedStorage& shared_storage) {
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), SmemLayoutK{});
Tensor sVt = make_tensor(make_smem_ptr(shared_storage.smem_v.data()), SmemLayoutVt{});
typename Ktraits::TiledMma0 tiled_mma0;
typename Ktraits::TiledMma1 tiled_mma1;
auto threadMma0 = tiled_mma0.get_thread_slice(thread_idx);
auto threadMma1 = tiled_mma1.get_thread_slice(thread_idx);
Tensor tSrQ = threadMma0.partition_fragment_A(sQ);
Tensor tSrK = threadMma0.partition_fragment_B(sK);
Tensor tOrV = threadMma1.partition_fragment_B(sVt);
auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) {
auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
pipeline.consumer_wait(smem_pipe_read, barrier_token);
};
tiled_mma1.accumulate_ = GMMA::ScaleOut::Zero;
int n_block = n_block_max - 1;
cutlass::ConsumerToken barrier_token = static_cast<cutlass::BarrierStatus>(shared_storage.barrier_Q.try_wait(0));
if (barrier_token == cutlass::BarrierStatus::WaitAgain) { shared_storage.barrier_Q.wait(0); }
Tensor tSrS = partition_fragment_C(tiled_mma0, select<0, 1>(TileShape_MNK{}));
consumer_wait(pipeline_k, smem_pipe_read_k);
gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma0, tSrQ, tSrK(_, _, _, smem_pipe_read_k.index()), tSrS);
warpgroup_wait<0>();
pipeline_k.consumer_release(smem_pipe_read_k);
++smem_pipe_read_k;
int mask_start_idx;
int mask_row_id;
int col_base;
if constexpr (NeedMask) {
const int lane_id = thread_idx % 32;
mask_start_idx = mask[0] / kBlockN - 1;
mask_row_id = thread_idx / 32 * 16 + lane_id / 4;
col_base = thread_idx % 4 * 2;
app_mask(
tSrS,
mask,
mask_row_id,
col_base + n_block * kBlockN);
} else {
auto col_limit_causal = [&](int row, int n_block) {
return row + 1 + seq_len_k - n_block * kBlockN - seq_len_q + m_block * kBlockM;
};
Tensor cS = cute::make_identity_tensor(select<0, 1>(TileShape_MNK{}));
Tensor tScS = threadMma0.partition_C(cS);
#pragma unroll
for (int i = 0; i < size(tSrS); ++i) {
if (int(get<1>(tScS(i))) >=
std::min(seq_len_k - n_block * kBlockN, col_limit_causal(int(get<0>(tScS(i))), n_block))) {
tSrS(i) = -INFINITY;
}
}
}
softmax.template online_softmax</*Is_first=*/true>(tSrS, mainloop_params.softmax_scale_log2);
Tensor tOrP = make_tensor(convert_type<Element>(tSrS).data(), convert_layout_acc_Aregs<typename Ktraits::TiledMma1>(tSrS.layout()));
Tensor scores_scale = make_fragment_like(softmax.row_max);
clear(scores_scale);
#pragma unroll 1
for (; n_block > 0; --n_block) {
Tensor tSrS = partition_fragment_C(tiled_mma0, select<0, 1>(TileShape_MNK{}));
consumer_wait(pipeline_k, smem_pipe_read_k);
if constexpr (NeedMask) {
if (n_block >= mask_start_idx) {
app_mask(
tSrS,
mask,
mask_row_id,
col_base + n_block * kBlockN);
}
}
gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma0, tSrQ, tSrK(_, _, _, smem_pipe_read_k.index()), tSrS);
softmax.rescale_o(tOrO, scores_scale);
consumer_wait(pipeline_v, smem_pipe_read_v);
gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma1, tOrP, tOrV(_, _, _, smem_pipe_read_v.index()), tOrO);
warpgroup_wait<1>();
pipeline_k.consumer_release(smem_pipe_read_k); // release K
cute::copy(softmax.template max</*Is_first=*/false>(tSrS, mainloop_params.softmax_scale_log2), scores_scale);
softmax.template online_softmax</*Is_first=*/false>(tSrS, mainloop_params.softmax_scale_log2);
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read_v); // release V
++smem_pipe_read_k;
++smem_pipe_read_v;
cute::copy(make_tensor(convert_type<Element>(tSrS).data(), convert_layout_acc_Aregs<typename Ktraits::TiledMma1>(tSrS.layout())), tOrP);
}
softmax.rescale_o(tOrO, scores_scale);
consumer_wait(pipeline_v, smem_pipe_read_v);
gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma1, tOrP, tOrV(_, _, _, smem_pipe_read_v.index()), tOrO);
cute::copy(softmax.finalize(mainloop_params.softmax_scale_log2), scores_scale);
warpgroup_wait<0>();
pipeline_v.consumer_release(smem_pipe_read_v);
++smem_pipe_read_v;
softmax.rescale_o(tOrO, scores_scale);
return;
}
template <int NumMmaThreads, typename SharedStorage, typename FrgTensorO, typename TiledMma, typename T>
CUTLASS_DEVICE void
store(Params const& mainloop_params,
FrgTensorO const& tOrO,
SharedStorage& shared_storage,
TiledMma tiled_mma,
int thread_idx,
const int o_head_stride,
const int real_seq,
T * out_ptr) {
Tensor sO = make_tensor(make_smem_ptr(shared_storage.smem_o.data()), SmemLayoutO{});
auto smem_tiled_copy_O = make_tiled_copy_C(SmemCopyAtomO{}, tiled_mma);
auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor tOrO_out = convert_type<Element>(tOrO);
Tensor taccOrO = smem_thr_copy_O.retile_S(tOrO_out);
Tensor taccOsO = smem_thr_copy_O.partition_D(sO);
cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
cutlass::arch::NamedBarrier::sync(NumMmaThreads, 0);
Tensor gO = make_tensor(make_gmem_ptr(out_ptr),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(o_head_stride, _1{}));
GmemTiledCopyO gmem_tiled_copy_O;
auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);
Tensor tOsO = gmem_thr_copy_O.partition_S(sO);
Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
Tensor cO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});
Tensor tOcO = gmem_thr_copy_O.partition_S(cO);
if (real_seq >= kBlockM) {
copy<true>(gmem_tiled_copy_O, tOsO, tOgO, tOcO);
} else {
copy<false>(gmem_tiled_copy_O, tOsO, tOgO, tOcO, real_seq);
}
}
};