Files
FastDeploy/fastdeploy/vision/classification/ppcls/preprocessor.h
Wang Xinyu d3d914856d [CVCUDA] Utilize CV-CUDA batch processing function (#1223)
* norm and permute batch processing

* move cache to mat, batch processors

* get batched tensor logic, resize on cpu logic

* fix cpu compile error

* remove vector mat api

* nits

* add comments

* nits

* fix batch size

* move initial resize on cpu option to use_cuda api

* fix pybind

* processor manager pybind

* rename mat and matbatch

* move initial resize on cpu to ppcls preprocessor

---------

Co-authored-by: Jason <jiangjiajun@baidu.com>
2023-02-07 13:44:30 +08:00

71 lines
2.5 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/manager.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace classification {
/*! @brief Preprocessor object for PaddleClas serials model.
*/
class FASTDEPLOY_DECL PaddleClasPreprocessor : public ProcessorManager {
public:
/** \brief Create a preprocessor instance for PaddleClas serials model
*
* \param[in] config_file Path of configuration file for deployment, e.g resnet/infer_cfg.yml
*/
explicit PaddleClasPreprocessor(const std::string& config_file);
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] image_batch The input image batch
* \param[in] outputs The output tensors which will feed in runtime
* \return true if the preprocess successed, otherwise false
*/
virtual bool Apply(FDMatBatch* image_batch,
std::vector<FDTensor>* outputs);
/// This function will disable normalize in preprocessing step.
void DisableNormalize();
/// This function will disable hwc2chw in preprocessing step.
void DisablePermute();
/** \brief When the initial operator is Resize, and input image size is large,
* maybe it's better to run resize on CPU, because the HostToDevice memcpy
* is time consuming. Set this true to run the initial resize on CPU.
*
* \param[in] v ture or false
*/
void InitialResizeOnCpu(bool v) { initial_resize_on_cpu_ = v; }
private:
bool BuildPreprocessPipelineFromConfig();
std::vector<std::shared_ptr<Processor>> processors_;
// for recording the switch of hwc2chw
bool disable_permute_ = false;
// for recording the switch of normalize
bool disable_normalize_ = false;
// read config file
std::string config_file_;
bool initial_resize_on_cpu_ = false;
};
} // namespace classification
} // namespace vision
} // namespace fastdeploy