Files
FastDeploy/fastdeploy/vision/classification/ppcls/ppcls_pybind.cc
Wang Xinyu d3d914856d [CVCUDA] Utilize CV-CUDA batch processing function (#1223)
* norm and permute batch processing

* move cache to mat, batch processors

* get batched tensor logic, resize on cpu logic

* fix cpu compile error

* remove vector mat api

* nits

* add comments

* nits

* fix batch size

* move initial resize on cpu option to use_cuda api

* fix pybind

* processor manager pybind

* rename mat and matbatch

* move initial resize on cpu to ppcls preprocessor

---------

Co-authored-by: Jason <jiangjiajun@baidu.com>
2023-02-07 13:44:30 +08:00

100 lines
4.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPaddleClas(pybind11::module& m) {
pybind11::class_<vision::classification::PaddleClasPreprocessor,
vision::ProcessorManager>(m, "PaddleClasPreprocessor")
.def(pybind11::init<std::string>())
.def("disable_normalize",
[](vision::classification::PaddleClasPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute",
[](vision::classification::PaddleClasPreprocessor& self) {
self.DisablePermute();
})
.def("initial_resize_on_cpu",
[](vision::classification::PaddleClasPreprocessor& self, bool v) {
self.InitialResizeOnCpu(v);
});
pybind11::class_<vision::classification::PaddleClasPostprocessor>(
m, "PaddleClasPostprocessor")
.def(pybind11::init<int>())
.def("run",
[](vision::classification::PaddleClasPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<vision::ClassifyResult> results;
if (!self.Run(inputs, &results)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"PaddleClasPostprocessor.");
}
return results;
})
.def("run",
[](vision::classification::PaddleClasPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<vision::ClassifyResult> results;
std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results)) {
throw std::runtime_error(
"Failed to postprocess the runtime result in "
"PaddleClasPostprocessor.");
}
return results;
})
.def_property("topk",
&vision::classification::PaddleClasPostprocessor::GetTopk,
&vision::classification::PaddleClasPostprocessor::SetTopk);
pybind11::class_<vision::classification::PaddleClasModel, FastDeployModel>(
m, "PaddleClasModel")
.def(pybind11::init<std::string, std::string, std::string, RuntimeOption,
ModelFormat>())
.def("clone",
[](vision::classification::PaddleClasModel& self) {
return self.Clone();
})
.def("predict",
[](vision::classification::PaddleClasModel& self,
pybind11::array& data) {
cv::Mat im = PyArrayToCvMat(data);
vision::ClassifyResult result;
self.Predict(im, &result);
return result;
})
.def("batch_predict",
[](vision::classification::PaddleClasModel& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::ClassifyResult> results;
self.BatchPredict(images, &results);
return results;
})
.def_property_readonly(
"preprocessor",
&vision::classification::PaddleClasModel::GetPreprocessor)
.def_property_readonly(
"postprocessor",
&vision::classification::PaddleClasModel::GetPostprocessor);
}
} // namespace fastdeploy