Files
FastDeploy/poros/unittest/converter/logical_test.cpp
kiddyjinjin d38aa4560c [Backend]add poros to fastdeploy (#671)
* add poros to fastdeploy

* update readme

* update readme & add license for all files

* update benchmark

* update copyright for some files

Co-authored-by: tianjinjin <tianjinjin@baidu.com>
2022-11-28 14:08:18 +08:00

201 lines
8.2 KiB
C++

// Copyright (c) 2022 Baidu, Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file logical_test.cpp
* @author Lin Xiao Chun (linxiaochun@baidu.com)
* @date 2022-02-17 18:32:15
* @brief
**/
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "poros/converter/gpu/logical.h"
#include "poros/util/test_util.h"
enum InputTypeEnum {
TYPE_A = 0, // [4]*[4]
TYPE_B, // [2,2]*[2,2]
TYPE_C, // [4]*[true]
TYPE_D, //broadcasting [1,3,2]*[2]
TYPE_E, //broadcasting [2,3,4]*[3,4]
};
static std::vector<at::Tensor> get_input_data(const InputTypeEnum input_type) {
std::vector<at::Tensor> input_data;
auto options_pyt = torch::TensorOptions().device(torch::kCUDA, 0).dtype(torch::kBool);
switch (input_type) {
case TYPE_A: // [4]*[4]
input_data.push_back(torch::tensor({false, true, false, true}, options_pyt));
input_data.push_back(torch::tensor({false, true, true, true}, options_pyt));
break;
case TYPE_B:// [2,2]*[2,2]
input_data.push_back(torch::tensor({{false, true},
{false, true}}, options_pyt));
input_data.push_back(torch::tensor({{false, true},
{true, true}}, options_pyt));
break;
case TYPE_C:// [4]*[1]
input_data.push_back(torch::tensor({false, true, false, true}, options_pyt));
input_data.push_back(torch::tensor({true}, options_pyt));
break;
case TYPE_D://broadcasting [1,3,2]*[2]
input_data.push_back(torch::tensor({{{true, true}, {false, true}, {false, false}}}, options_pyt));
input_data.push_back(torch::tensor({false, true}, options_pyt));
break;
case TYPE_E://broadcasting [2,3,4]*[3,4]
input_data.push_back(torch::tensor({
{{false, true, false, true}, {false, true, false, false},
{true, true, true, true}},
{{false, true, false, false}, {true, true, true, true},
{false, true, false, true}}
}, options_pyt));
input_data.push_back(torch::tensor({{false, true, false, true},
{false, true, false, false},
{true, true, true, true}}, options_pyt));
break;
}
return input_data;
}
static void and_test_helper(const std::string &graph_IR,
baidu::mirana::poros::IConverter *converter,
const InputTypeEnum input_type) {
auto input_data = get_input_data(input_type);
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
// 运行原图与engine获取结果
std::vector<at::Tensor> graph_output;
std::vector<at::Tensor> poros_output;
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter,
input_data, graph_output, poros_output));
ASSERT_EQ(1, graph_output.size());
ASSERT_EQ(1, poros_output.size());
ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6));
}
static std::string gen_and_or_tensor_graph(const std::string &op) {
return R"IR(
graph(%0 : Tensor, %1 : Tensor):
%2 : Tensor = aten::)IR" + op + R"IR((%0, %1)
return (%2))IR";
}
static std::string gen_not_tensor_graph(const std::string &op) {
return R"IR(
graph(%0 : Tensor):
%2 : Tensor = aten::)IR" + op + R"IR((%0)
return (%2))IR";
}
TEST(Converters, ATenLogicalAndConvertsCorrectly) {
const auto graph_IR = gen_and_or_tensor_graph("__and__");
baidu::mirana::poros::AndConverter converter;
and_test_helper(graph_IR, &converter, TYPE_A);
and_test_helper(graph_IR, &converter, TYPE_B);
and_test_helper(graph_IR, &converter, TYPE_C);
and_test_helper(graph_IR, &converter, TYPE_D);
and_test_helper(graph_IR, &converter, TYPE_E);
}
TEST(Converters, ATenLogicalBitwiseAndConvertsCorrectly) {
const auto graph_IR = gen_and_or_tensor_graph("bitwise_and");
baidu::mirana::poros::AndConverter converter;
and_test_helper(graph_IR, &converter, TYPE_A);
and_test_helper(graph_IR, &converter, TYPE_B);
and_test_helper(graph_IR, &converter, TYPE_C);
and_test_helper(graph_IR, &converter, TYPE_D);
and_test_helper(graph_IR, &converter, TYPE_E);
}
TEST(Converters, ATenLogicalOrConvertsCorrectly) {
const auto graph_IR = gen_and_or_tensor_graph("__or__");
baidu::mirana::poros::OrConverter converter;
and_test_helper(graph_IR, &converter, TYPE_A);
and_test_helper(graph_IR, &converter, TYPE_B);
and_test_helper(graph_IR, &converter, TYPE_C);
and_test_helper(graph_IR, &converter, TYPE_D);
and_test_helper(graph_IR, &converter, TYPE_E);
}
TEST(Converters, ATenLogicalBitwiseOrConvertsCorrectly) {
const auto graph_IR = gen_and_or_tensor_graph("bitwise_or");
baidu::mirana::poros::OrConverter converter;
and_test_helper(graph_IR, &converter, TYPE_A);
and_test_helper(graph_IR, &converter, TYPE_B);
and_test_helper(graph_IR, &converter, TYPE_C);
and_test_helper(graph_IR, &converter, TYPE_D);
and_test_helper(graph_IR, &converter, TYPE_E);
}
TEST(Converters, ATenLogicalXOrConvertsCorrectly) {
const auto graph_IR = gen_and_or_tensor_graph("__xor__");
baidu::mirana::poros::XorConverter converter;
and_test_helper(graph_IR, &converter, TYPE_A);
and_test_helper(graph_IR, &converter, TYPE_B);
and_test_helper(graph_IR, &converter, TYPE_C);
and_test_helper(graph_IR, &converter, TYPE_D);
and_test_helper(graph_IR, &converter, TYPE_E);
}
TEST(Converters, ATenLogicalBitwiseXOrConvertsCorrectly) {
const auto graph_IR = gen_and_or_tensor_graph("bitwise_xor");
baidu::mirana::poros::XorConverter converter;
and_test_helper(graph_IR, &converter, TYPE_A);
and_test_helper(graph_IR, &converter, TYPE_B);
and_test_helper(graph_IR, &converter, TYPE_C);
and_test_helper(graph_IR, &converter, TYPE_D);
and_test_helper(graph_IR, &converter, TYPE_E);
}
static void not_test_helper(const std::string &graph_IR,
baidu::mirana::poros::IConverter *converter,
const InputTypeEnum input_type) {
auto input_data = get_input_data(input_type);
input_data.pop_back(); // only need one input, pop out the last one
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
// 运行原图与engine获取结果
std::vector<at::Tensor> graph_output;
std::vector<at::Tensor> poros_output;
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter,
input_data, graph_output, poros_output));
ASSERT_EQ(1, graph_output.size());
ASSERT_EQ(1, poros_output.size());
ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6));
}
TEST(Converters, ATenLogicalBitwiseNotConvertsCorrectly) {
const auto graph_IR = gen_not_tensor_graph("bitwise_not");
baidu::mirana::poros::NotConverter converter;
not_test_helper(graph_IR, &converter, TYPE_A);
not_test_helper(graph_IR, &converter, TYPE_B);
not_test_helper(graph_IR, &converter, TYPE_C);
not_test_helper(graph_IR, &converter, TYPE_D);
not_test_helper(graph_IR, &converter, TYPE_E);
}
//}