mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* avoid mem copy for cpp benchmark * set CMAKE_BUILD_TYPE to Release * Add SegmentationDiff * change pointer to reference * fixed bug * cast uint8 to int32 * Add diff compare for OCR * Add diff compare for OCR * rm ppocr pipeline * Add yolov5 diff compare * Add yolov5 diff compare * deal with comments * deal with comments * fixed bug * fixed bug
120 lines
3.8 KiB
C++
120 lines
3.8 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/detection/contrib/yolov5seg/preprocessor.h"
|
|
#include "fastdeploy/function/concat.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
YOLOv5SegPreprocessor::YOLOv5SegPreprocessor() {
|
|
size_ = {640, 640};
|
|
padding_value_ = {114.0, 114.0, 114.0};
|
|
is_mini_pad_ = false;
|
|
is_no_pad_ = false;
|
|
is_scale_up_ = true;
|
|
stride_ = 32;
|
|
max_wh_ = 7680.0;
|
|
}
|
|
|
|
void YOLOv5SegPreprocessor::LetterBox(FDMat* mat) {
|
|
float scale =
|
|
std::min(size_[1] * 1.0 / mat->Height(), size_[0] * 1.0 / mat->Width());
|
|
if (!is_scale_up_) {
|
|
scale = std::min(scale, 1.0f);
|
|
}
|
|
|
|
int resize_h = int(round(mat->Height() * scale));
|
|
int resize_w = int(round(mat->Width() * scale));
|
|
|
|
int pad_w = size_[0] - resize_w;
|
|
int pad_h = size_[1] - resize_h;
|
|
if (is_mini_pad_) {
|
|
pad_h = pad_h % stride_;
|
|
pad_w = pad_w % stride_;
|
|
} else if (is_no_pad_) {
|
|
pad_h = 0;
|
|
pad_w = 0;
|
|
resize_h = size_[1];
|
|
resize_w = size_[0];
|
|
}
|
|
if (std::fabs(scale - 1.0f) > 1e-06) {
|
|
Resize::Run(mat, resize_w, resize_h);
|
|
}
|
|
if (pad_h > 0 || pad_w > 0) {
|
|
float half_h = pad_h * 1.0 / 2;
|
|
int top = int(round(half_h - 0.1));
|
|
int bottom = int(round(half_h + 0.1));
|
|
float half_w = pad_w * 1.0 / 2;
|
|
int left = int(round(half_w - 0.1));
|
|
int right = int(round(half_w + 0.1));
|
|
Pad::Run(mat, top, bottom, left, right, padding_value_);
|
|
}
|
|
}
|
|
|
|
bool YOLOv5SegPreprocessor::Preprocess(
|
|
FDMat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info) {
|
|
// Record the shape of image and the shape of preprocessed image
|
|
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
|
|
static_cast<float>(mat->Width())};
|
|
// yolov5seg's preprocess steps
|
|
// 1. letterbox
|
|
// 2. convert_and_permute(swap_rb=true)
|
|
LetterBox(mat);
|
|
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
|
|
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
|
|
ConvertAndPermute::Run(mat, alpha, beta, true);
|
|
|
|
// Record output shape of preprocessed image
|
|
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
|
static_cast<float>(mat->Width())};
|
|
|
|
mat->ShareWithTensor(output);
|
|
output->ExpandDim(0); // reshape to n, c, h, w
|
|
return true;
|
|
}
|
|
|
|
bool YOLOv5SegPreprocessor::Run(
|
|
std::vector<FDMat>* images, std::vector<FDTensor>* outputs,
|
|
std::vector<std::map<std::string, std::array<float, 2>>>* ims_info) {
|
|
if (images->size() == 0) {
|
|
FDERROR << "The size of input images should be greater than 0."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
ims_info->resize(images->size());
|
|
outputs->resize(1);
|
|
// Concat all the preprocessed data to a batch tensor
|
|
std::vector<FDTensor> tensors(images->size());
|
|
for (size_t i = 0; i < images->size(); ++i) {
|
|
if (!Preprocess(&(*images)[i], &tensors[i], &(*ims_info)[i])) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (tensors.size() == 1) {
|
|
(*outputs)[0] = std::move(tensors[0]);
|
|
} else {
|
|
function::Concat(tensors, &((*outputs)[0]), 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|