mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			433 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			433 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| from functools import partial
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddleformers.transformers import PretrainedModel
 | |
| from paddleformers.utils.log import logger
 | |
| 
 | |
| from fastdeploy.config import FDConfig, ModelConfig
 | |
| from fastdeploy.model_executor.graph_optimization.decorator import \
 | |
|     support_graph_optimization
 | |
| from fastdeploy.model_executor.layers.activation import SiluAndMul
 | |
| from fastdeploy.model_executor.layers.attention.attention import Attention
 | |
| from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
 | |
| from fastdeploy.model_executor.layers.linear import (
 | |
|     MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear)
 | |
| from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
 | |
| from fastdeploy.model_executor.layers.normalization import RMSNorm
 | |
| from fastdeploy.model_executor.models.model_base import ModelForCasualLM
 | |
| from fastdeploy.worker.forward_meta import ForwardMeta
 | |
| 
 | |
| 
 | |
| class Qwen2MLP(nn.Layer):
 | |
|     """
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         prefix: str = "",
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         self.nranks = fd_config.parallel_config.tensor_parallel_degree
 | |
|         self.gate_up_proj = MergedColumnParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.up_gate_proj",
 | |
|             input_size=fd_config.model_config.hidden_size,
 | |
|             output_size=fd_config.model_config.ffn_hidden_size * 2,
 | |
|             with_bias=False,
 | |
|             activation=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|         self.down_proj = RowParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.down_proj",
 | |
|             input_size=fd_config.model_config.ffn_hidden_size,
 | |
|             output_size=fd_config.model_config.hidden_size,
 | |
|             with_bias=False,
 | |
|         )
 | |
| 
 | |
|         self.act_fn = SiluAndMul(
 | |
|             fd_config=fd_config,
 | |
|             bias=getattr(self.gate_up_proj, "linear_bias", None),
 | |
|             act_method=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         """
 | |
|         self.gate_up_proj.load_state_dict(state_dict)
 | |
|         self.down_proj.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         """
 | |
|         """
 | |
|         gate_up_out = self.gate_up_proj(x)
 | |
|         act_out = self.act_fn(gate_up_out)
 | |
|         down_out = self.down_proj(act_out)
 | |
|         return down_out
 | |
| 
 | |
| 
 | |
| class Qwen2Attention(nn.Layer):
 | |
|     """
 | |
|     """
 | |
| 
 | |
|     def __init__(self,
 | |
|                  fd_config: FDConfig,
 | |
|                  layer_id: int,
 | |
|                  prefix: str = "") -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|         self.qkv_proj = QKVParallelLinear(fd_config=fd_config,
 | |
|                                           prefix=f"{prefix}.qkv_proj",
 | |
|                                           with_bias=True)
 | |
| 
 | |
|         self.o_proj = RowParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.o_proj",
 | |
|             input_size=fd_config.model_config.hidden_size,
 | |
|             output_size=fd_config.model_config.hidden_size,
 | |
|         )
 | |
| 
 | |
|         self.attn = Attention(fd_config=fd_config,
 | |
|                               layer_id=layer_id,
 | |
|                               prefix=prefix,
 | |
|                               use_neox_rotary_style=True)
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         """
 | |
|         self.qkv_proj.load_state_dict(state_dict)
 | |
|         self.o_proj.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|     ):
 | |
|         """
 | |
|         """
 | |
|         qkv_out = self.qkv_proj(hidden_states)
 | |
| 
 | |
|         atten_out = self.attn(
 | |
|             qkv=qkv_out,
 | |
|             forward_meta=forward_meta,
 | |
|         )
 | |
|         output = self.o_proj(atten_out)
 | |
|         return output
 | |
| 
 | |
| 
 | |
| class Qwen2DecoderLayer(nn.Layer):
 | |
|     """
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         prefix: str = "",
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         layer_id = int(prefix.split(sep='.')[-1])
 | |
| 
 | |
|         self.self_attn = Qwen2Attention(
 | |
|             fd_config=fd_config,
 | |
|             layer_id=layer_id,
 | |
|             prefix=f"{prefix}.self_attn",
 | |
|         )
 | |
| 
 | |
|         self.mlp = Qwen2MLP(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.mlp",
 | |
|         )
 | |
| 
 | |
|         self.input_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=1e-6,
 | |
|             prefix=f"{prefix}.input_layernorm",
 | |
|         )
 | |
| 
 | |
|         self.post_attention_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=1e-6,
 | |
|             prefix=f"{prefix}.post_attention_layernorm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         """
 | |
|         self.self_attn.load_state_dict(state_dict)
 | |
|         self.mlp.load_state_dict(state_dict)
 | |
|         self.input_layernorm.load_state_dict(state_dict)
 | |
|         self.post_attention_layernorm.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|         residual: paddle.Tensor = None,
 | |
|     ):
 | |
|         """
 | |
|         """
 | |
|         # Self Attention
 | |
|         if residual is None:
 | |
|             residual = hidden_states
 | |
|             hidden_states = self.input_layernorm(hidden_states)
 | |
|         else:
 | |
|             hidden_states, residual = self.input_layernorm(
 | |
|                 hidden_states, residual)
 | |
| 
 | |
|         hidden_states = self.self_attn(
 | |
|             hidden_states=hidden_states,
 | |
|             forward_meta=forward_meta,
 | |
|         )
 | |
| 
 | |
|         # Fully Connected
 | |
|         hidden_states, residual = self.post_attention_layernorm(
 | |
|             hidden_states, residual)
 | |
| 
 | |
|         hidden_states = self.mlp(hidden_states)
 | |
| 
 | |
|         return hidden_states, residual
 | |
| 
 | |
| 
 | |
| @support_graph_optimization
 | |
| class Qwen2Model(nn.Layer):
 | |
|     """
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig = None,
 | |
|     ):
 | |
|         """
 | |
|         Initializer for the Qwen2Model class.
 | |
| 
 | |
|         Args:
 | |
| 
 | |
|         """
 | |
|         super().__init__()
 | |
| 
 | |
|         self.num_layers = fd_config.model_config.num_layers
 | |
|         fd_config.model_config.prefix_name = "qwen2"
 | |
| 
 | |
|         self.embeddings = VocabParallelEmbedding(
 | |
|             fd_config=fd_config,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             params_dtype=paddle.get_default_dtype,
 | |
|             prefix=(f"{fd_config.model_config.prefix_name}.embed_tokens"),
 | |
|         )
 | |
| 
 | |
|         self.layers = nn.LayerList([
 | |
|             Qwen2DecoderLayer(
 | |
|                 fd_config=fd_config,
 | |
|                 prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
 | |
|             for i in range(self.num_layers)
 | |
|         ])
 | |
| 
 | |
|         self.norm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=1e-5,
 | |
|             prefix=f"{fd_config.model_config.prefix_name}.norm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.embeddings.load_state_dict(state_dict)
 | |
|         self.norm.load_state_dict(state_dict)
 | |
|         for i in range(self.num_layers):
 | |
|             logger.info(f"Start load layer {i}")
 | |
|             self.layers[i].load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         """
 | |
|         """
 | |
| 
 | |
|         hidden_states = self.embeddings(ids_remove_padding=ids_remove_padding)
 | |
| 
 | |
|         residual = None
 | |
| 
 | |
|         for i in range(self.num_layers):
 | |
|             hidden_states, residual = self.layers[i](forward_meta,
 | |
|                                                      hidden_states, residual)
 | |
| 
 | |
|         hidden_states = hidden_states + residual
 | |
| 
 | |
|         out = self.norm(hidden_states)
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class Qwen2ForCausalLM(ModelForCasualLM):
 | |
|     """
 | |
|     Qwen2ForCausalLM
 | |
|     """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super(Qwen2ForCausalLM, self).__init__(fd_config)
 | |
| 
 | |
|         self.fd_config =fd_config
 | |
|         self.model = Qwen2Model(fd_config=fd_config)
 | |
| 
 | |
|         self.ori_vocab_size = fd_config.model_config.ori_vocab_size
 | |
| 
 | |
|         self.lm_head = ParallelLMHead(
 | |
|             fd_config=fd_config,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             prefix="lm_head",
 | |
|         )
 | |
| 
 | |
|     @classmethod
 | |
|     def name(self):
 | |
|         """
 | |
|         """
 | |
|         return "Qwen2ForCausalLM"
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def set_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
| 
 | |
|         Args:
 | |
|             state_dict (dict[str, np.ndarray | paddle.Tensor]):
 | |
|                 A dictionary containing model parameters, where keys are parameter names
 | |
|                 and values are NumPy arrays or PaddlePaddle tensors.
 | |
|         """
 | |
|         self.model.load_state_dict(state_dict)
 | |
|         self.lm_head.load_state_dict(state_dict)
 | |
| 
 | |
|     def compute_logits(self, hidden_states: paddle.Tensor):
 | |
|         """
 | |
|         """
 | |
|         logits = self.lm_head(hidden_states)
 | |
|         logits = paddle.cast(logits, paddle.float32)
 | |
|         logits[:, self.ori_vocab_size:] = -float("inf")
 | |
| 
 | |
|         return logits
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         """
 | |
|         """
 | |
|         hidden_states = self.model(ids_remove_padding=ids_remove_padding,
 | |
|                                    forward_meta=forward_meta)
 | |
| 
 | |
|         return hidden_states
 | |
| 
 | |
| 
 | |
| class Qwen2PretrainedModel(PretrainedModel):
 | |
|     """
 | |
|     Qwen2PretrainedModel
 | |
|     """
 | |
| 
 | |
|     config_class = FDConfig
 | |
| 
 | |
|     def _init_weight(self, layer):
 | |
|         """
 | |
|         _init_weight
 | |
|         """
 | |
|         return None
 | |
| 
 | |
|     @classmethod
 | |
|     def _get_tensor_parallel_mappings(cls, config: ModelConfig, is_split=True):
 | |
| 
 | |
|         from paddleformers.transformers.conversion_utils import \
 | |
|             split_or_merge_func
 | |
| 
 | |
|         fn = split_or_merge_func(
 | |
|             is_split=is_split,
 | |
|             tensor_parallel_degree=config.tensor_parallel_degree,
 | |
|             tensor_parallel_rank=config.tensor_parallel_rank,
 | |
|             num_attention_heads=config.num_attention_heads,
 | |
|         )
 | |
| 
 | |
|         def get_tensor_parallel_split_mappings(num_layers):
 | |
|             final_actions = {}
 | |
| 
 | |
|             base_actions = {
 | |
|                 "lm_head.weight": partial(fn, is_column=True),
 | |
|                 # Row Linear
 | |
|                 "embed_tokens.weight": partial(fn, is_column=False),
 | |
|                 "layers.0.self_attn.o_proj.weight": partial(fn,
 | |
|                                                             is_column=False),
 | |
|                 "layers.0.mlp.down_proj.weight": partial(fn, is_column=False),
 | |
|             }
 | |
| 
 | |
|             # Column Linear
 | |
|             if config.fuse_attention_qkv:
 | |
|                 base_actions["layers.0.self_attn.qkv_proj.weight"] = partial(
 | |
|                     fn, is_column=True)
 | |
|             else:
 | |
|                 base_actions["layers.0.self_attn.q_proj.weight"] = partial(
 | |
|                     fn, is_column=True)
 | |
|                 base_actions["layers.0.self_attn.q_proj.bias"] = partial(
 | |
|                     fn, is_column=True)
 | |
|                 # if we have enough num_key_value_heads to split, then split it.
 | |
|                 if config.num_key_value_heads % config.tensor_parallel_degree == 0:
 | |
|                     base_actions["layers.0.self_attn.k_proj.weight"] = partial(
 | |
|                         fn, is_column=True)
 | |
|                     base_actions["layers.0.self_attn.v_proj.weight"] = partial(
 | |
|                         fn, is_column=True)
 | |
|                     base_actions["layers.0.self_attn.k_proj.bias"] = partial(
 | |
|                         fn, is_column=True)
 | |
|                     base_actions["layers.0.self_attn.v_proj.bias"] = partial(
 | |
|                         fn, is_column=True)
 | |
| 
 | |
|             base_actions["layers.0.mlp.gate_proj.weight"] = partial(
 | |
|                 fn, is_column=True)
 | |
|             base_actions["layers.0.mlp.up_proj.weight"] = partial(
 | |
|                 fn, is_column=True)
 | |
| 
 | |
|             for key, action in base_actions.items():
 | |
|                 if "layers.0." in key:
 | |
|                     for i in range(num_layers):
 | |
|                         final_actions[key.replace("layers.0.",
 | |
|                                                   f"layers.{i}.")] = action
 | |
|                 final_actions[key] = action
 | |
| 
 | |
|             return final_actions
 | |
| 
 | |
|         mappings = get_tensor_parallel_split_mappings(config.num_layers)
 | |
| 
 | |
|         return mappings
 | 
