mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			760 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			760 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| 
 | |
| from __future__ import annotations
 | |
| 
 | |
| import math
 | |
| from functools import partial
 | |
| 
 | |
| import paddle
 | |
| from paddle import nn
 | |
| from paddleformers.transformers import PretrainedModel
 | |
| from paddleformers.utils.log import logger
 | |
| 
 | |
| from fastdeploy.config import FDConfig
 | |
| from fastdeploy.distributed.communication_op import \
 | |
|     tensor_model_parallel_all_reduce
 | |
| from fastdeploy.model_executor.layers.activation import SiluAndMul
 | |
| from fastdeploy.model_executor.layers.attention.attention import Attention
 | |
| from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
 | |
| from fastdeploy.model_executor.layers.linear import (
 | |
|     ColumnParallelLinear, KVBatchLinear, MergedColumnParallelLinear,
 | |
|     ReplicatedLinear, RowParallelLinear)
 | |
| from fastdeploy.model_executor.layers.lm_head import ParallelLMHead
 | |
| from fastdeploy.model_executor.layers.moe.moe import FusedMoE
 | |
| from fastdeploy.model_executor.layers.normalization import RMSNorm
 | |
| from fastdeploy.model_executor.layers.rotary_embedding import \
 | |
|     DeepseekScalingRotaryEmbedding
 | |
| from fastdeploy.model_executor.models.model_base import ModelForCasualLM
 | |
| from fastdeploy.platforms import current_platform
 | |
| from fastdeploy.worker.forward_meta import ForwardMeta
 | |
| 
 | |
| if current_platform.is_cuda():
 | |
|     from fastdeploy.model_executor.ops.gpu import \
 | |
|         get_position_ids_and_mask_encoder_batch
 | |
| 
 | |
| 
 | |
| class DeepSeekV3MLP(nn.Layer):
 | |
|     """
 | |
|     DeepSeekV3MLP, for Dense FFN and Shared Experts Layer.
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         intermediate_size: int,
 | |
|         prefix: str = "",
 | |
|         reduce_results: bool = True,
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|         self.gate_up_proj = MergedColumnParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.up_gate_proj",
 | |
|             input_size=fd_config.model_config.hidden_size,
 | |
|             output_size=intermediate_size * 2,
 | |
|             with_bias=False,
 | |
|             activation=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|         self.down_proj = RowParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.down_proj",
 | |
|             input_size=intermediate_size,
 | |
|             output_size=fd_config.model_config.hidden_size,
 | |
|             with_bias=False,
 | |
|             reduce_results=reduce_results,
 | |
|         )
 | |
| 
 | |
|         self.act_fn = SiluAndMul(
 | |
|             fd_config=fd_config,
 | |
|             bias=None,
 | |
|             act_method=fd_config.model_config.hidden_act,
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         """
 | |
|         self.gate_up_proj.load_state_dict(state_dict)
 | |
|         self.down_proj.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         """
 | |
|         """
 | |
|         gate_up_out = self.gate_up_proj(x)
 | |
|         act_out = self.act_fn(gate_up_out)
 | |
|         down_out = self.down_proj(act_out)
 | |
|         return down_out
 | |
| 
 | |
| 
 | |
| class DeepSeekV3MoE(nn.Layer):
 | |
|     """
 | |
|     DeepSeekV3MoE, for MoE Layer.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig, layer_id: int,
 | |
|                  prefix: str) -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|         self.tp_size = fd_config.parallel_config.tensor_parallel_degree
 | |
| 
 | |
|         weight_key_map = {
 | |
|             "gate_weight_key": f"{prefix}.gate.weight",
 | |
|             "gate_correction_bias_key":
 | |
|             f"{prefix}.gate.e_score_correction_bias",
 | |
|             "ffn1_expert_weight_key":
 | |
|             f"{prefix}.experts.{{}}.up_gate_proj.weight",
 | |
|             "ffn2_expert_weight_key":
 | |
|             f"{prefix}.experts.{{}}.down_proj.weight",
 | |
|         }
 | |
| 
 | |
|         self.fused_moe = FusedMoE(
 | |
|             fd_config=fd_config,
 | |
|             reduce_results=False,
 | |
|             moe_intermediate_size=fd_config.model_config.deepseekv3.
 | |
|             moe_intermediate_size,
 | |
|             num_experts=fd_config.model_config.deepseekv3.n_routed_experts,
 | |
|             top_k=fd_config.model_config.deepseekv3.num_experts_per_tok,
 | |
|             topk_method=fd_config.model_config.deepseekv3.topk_method,
 | |
|             topk_group=fd_config.model_config.deepseekv3.topk_group,
 | |
|             n_group=fd_config.model_config.deepseekv3.n_group,
 | |
|             routed_scaling_factor=fd_config.model_config.deepseekv3.
 | |
|             routed_scaling_factor,
 | |
|             layer_idx=layer_id,
 | |
|             weight_key_map=weight_key_map,
 | |
|         )
 | |
| 
 | |
|         self.num_shared_experts = fd_config.model_config.deepseekv3.n_shared_experts
 | |
|         shared_experts_intermediate_size = (
 | |
|             self.num_shared_experts *
 | |
|             fd_config.model_config.deepseekv3.moe_intermediate_size)
 | |
| 
 | |
|         self.shared_experts = DeepSeekV3MLP(
 | |
|             fd_config=fd_config,
 | |
|             intermediate_size=shared_experts_intermediate_size,
 | |
|             prefix=f"{prefix}.shared_experts",
 | |
|             reduce_results=False,
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         """
 | |
|         self.fused_moe.load_state_dict(state_dict)
 | |
|         self.shared_experts.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(self, hidden_states: paddle.Tensor):
 | |
|         """
 | |
|         """
 | |
|         shared_experts_out = self.shared_experts(hidden_states)
 | |
|         moe_out = self.fused_moe(hidden_states)
 | |
|         moe_out = moe_out + shared_experts_out
 | |
|         # We do to TP all reduce after the sum of experts.
 | |
|         if self.tp_size > 1:
 | |
|             tensor_model_parallel_all_reduce(moe_out)
 | |
|         return moe_out
 | |
| 
 | |
| 
 | |
| class DeepseekV3MLAAttention(nn.Layer):
 | |
|     """
 | |
|     DeepseekV3MLAAttention
 | |
|     """
 | |
| 
 | |
|     def __init__(self,
 | |
|                  fd_config: FDConfig,
 | |
|                  layer_id: int,
 | |
|                  prefix: str = "") -> None:
 | |
|         super().__init__()
 | |
| 
 | |
|         self.tp_size = fd_config.parallel_config.tensor_parallel_degree
 | |
|         self.hidden_size = fd_config.model_config.hidden_size
 | |
|         self.num_attention_heads = fd_config.model_config.num_attention_heads
 | |
|         self.num_attention_heads_tp = self.num_attention_heads // self.tp_size
 | |
| 
 | |
|         # MLA
 | |
|         self.qk_nope_head_dim = fd_config.model_config.deepseekv3.qk_nope_head_dim
 | |
|         self.qk_rope_head_dim = fd_config.model_config.deepseekv3.qk_rope_head_dim
 | |
|         self.qk_head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim
 | |
|         self.v_head_dim = fd_config.model_config.deepseekv3.v_head_dim
 | |
|         self.q_lora_rank = fd_config.model_config.deepseekv3.q_lora_rank
 | |
|         self.kv_lora_rank = fd_config.model_config.deepseekv3.kv_lora_rank
 | |
| 
 | |
|         self.attn_softmax_scale = self.qk_head_dim**-0.5
 | |
|         self.rope_theta = fd_config.model_config.rope_theta
 | |
|         self.rms_norm_eps = fd_config.model_config.rms_norm_eps
 | |
| 
 | |
|         if self.q_lora_rank is not None:
 | |
|             self.q_a_proj = ReplicatedLinear(fd_config=fd_config,
 | |
|                                              prefix=f"{prefix}.q_a_proj",
 | |
|                                              input_size=self.hidden_size,
 | |
|                                              output_size=self.q_lora_rank,
 | |
|                                              with_bias=False)
 | |
| 
 | |
|             self.q_a_layernorm = RMSNorm(fd_config,
 | |
|                                          hidden_size=self.q_lora_rank,
 | |
|                                          eps=self.rms_norm_eps,
 | |
|                                          prefix=f"{prefix}.q_a_layernorm")
 | |
| 
 | |
|             self.q_b_proj = ColumnParallelLinear(
 | |
|                 fd_config=fd_config,
 | |
|                 prefix=f"{prefix}.q_b_proj",
 | |
|                 input_size=self.q_lora_rank,
 | |
|                 output_size=self.num_attention_heads * self.qk_head_dim,
 | |
|                 with_bias=False,
 | |
|             )
 | |
|         else:
 | |
|             assert (self.q_lora_rank is not None
 | |
|                     ), "self.q_lora_rank is None, Please Check your config."
 | |
| 
 | |
|         # 不切TP,跑 W4A16 Gemm
 | |
|         self.kv_a_proj_with_mqa = ReplicatedLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.kv_a_proj_with_mqa",
 | |
|             input_size=self.hidden_size,
 | |
|             output_size=self.kv_lora_rank + self.qk_rope_head_dim,
 | |
|             with_bias=False)
 | |
| 
 | |
|         self.kv_a_layernorm = RMSNorm(fd_config,
 | |
|                                       hidden_size=self.kv_lora_rank,
 | |
|                                       eps=self.rms_norm_eps,
 | |
|                                       prefix=f"{prefix}.kv_a_layernorm")
 | |
| 
 | |
|         self.kv_b_proj = ColumnParallelLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.kv_b_proj",
 | |
|             input_size=self.kv_lora_rank,
 | |
|             output_size=self.num_attention_heads *
 | |
|             (self.qk_nope_head_dim + self.v_head_dim),
 | |
|             with_bias=False,
 | |
|         )
 | |
| 
 | |
|         self.o_proj = RowParallelLinear(fd_config,
 | |
|                                         prefix=f"{prefix}.o_proj",
 | |
|                                         input_size=self.num_attention_heads *
 | |
|                                         self.v_head_dim,
 | |
|                                         output_size=self.hidden_size,
 | |
|                                         with_bias=False)
 | |
| 
 | |
|         self.kv_b_proj_bmm = KVBatchLinear(
 | |
|             fd_config=fd_config,
 | |
|             prefix=f"{prefix}.kv_b_proj",
 | |
|             kv_lora_rank=self.kv_lora_rank,
 | |
|             num_attention_heads=self.num_attention_heads,
 | |
|             qk_nope_head_dim=self.qk_nope_head_dim,
 | |
|             v_head_dim=self.v_head_dim)
 | |
| 
 | |
|         self.rope_scaling = fd_config.model_config.deepseekv3.rope_scaling
 | |
|         if self.rope_scaling:
 | |
|             mscale_all_dim = self.rope_scaling.get("mscale_all_dim", False)
 | |
|             scaling_factor = self.rope_scaling["factor"]
 | |
|             mscale = self.yarn_get_mscale(scaling_factor,
 | |
|                                           float(mscale_all_dim))
 | |
|             self.attn_softmax_scale = self.attn_softmax_scale * mscale * mscale
 | |
| 
 | |
|         rope_scaling_kwargs = {
 | |
|             key: self.rope_scaling[key]
 | |
|             for key in [
 | |
|                 "beta_fast",
 | |
|                 "beta_slow",
 | |
|                 "mscale",
 | |
|                 "mscale_all_dim",
 | |
|             ] if key in self.rope_scaling
 | |
|         }
 | |
|         self.rope_scaling_factor = self.rope_scaling["factor"]
 | |
|         self.rope_scaling_original_max_position_embeddings = self.rope_scaling[
 | |
|             "original_max_position_embeddings"]
 | |
|         self.rotary_emb = DeepseekScalingRotaryEmbedding(
 | |
|             self.qk_rope_head_dim,
 | |
|             max_position_embeddings=self.
 | |
|             rope_scaling_original_max_position_embeddings,
 | |
|             base=self.rope_theta,
 | |
|             scaling_factor=self.rope_scaling_factor,
 | |
|             **rope_scaling_kwargs,
 | |
|         )
 | |
| 
 | |
|         self.mla_attn = Attention(
 | |
|             fd_config=fd_config,
 | |
|             layer_id=layer_id,
 | |
|             prefix=prefix,
 | |
|             use_neox_rotary_style=False,
 | |
|         )
 | |
| 
 | |
|         self.prefix = prefix
 | |
| 
 | |
|     @staticmethod
 | |
|     def yarn_get_mscale(scale=1, mscale=1):
 | |
|         """
 | |
|         """
 | |
|         if scale <= 1:
 | |
|             return 1.0
 | |
|         return 0.1 * mscale * math.log(scale) + 1.0
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|         position_ids: paddle.Tensor,
 | |
|         mask_encoder_batch: paddle.Tensor,
 | |
|     ):
 | |
|         """
 | |
|         """
 | |
|         layernorm_out = hidden_states
 | |
|         fmha_out = paddle.zeros(shape=[
 | |
|             layernorm_out.shape[0],
 | |
|             self.num_attention_heads_tp * self.v_head_dim
 | |
|         ],
 | |
|                                 dtype=layernorm_out.dtype)
 | |
| 
 | |
|         if forward_meta.max_enc_len_this_time:
 | |
|             query = self.q_a_proj(layernorm_out)
 | |
|             query = self.q_a_layernorm(query)
 | |
|             query = self.q_b_proj(query)
 | |
| 
 | |
|             query = query.reshape(
 | |
|                 [-1, self.num_attention_heads_tp, self.qk_head_dim])
 | |
|             query_nope, query_pe = query.split(
 | |
|                 [self.qk_nope_head_dim, self.qk_rope_head_dim], axis=-1)
 | |
| 
 | |
|             compressed_kv = self.kv_a_proj_with_mqa(layernorm_out)
 | |
|             compressed_kv, key_pe = compressed_kv.split(
 | |
|                 [self.kv_lora_rank, self.qk_rope_head_dim], axis=-1)
 | |
|             key_pe = key_pe.reshape([-1, 1, self.qk_rope_head_dim])
 | |
|             compressed_kv = self.kv_a_layernorm(compressed_kv)
 | |
| 
 | |
|             query_pe, key_pe = self.rotary_emb(position_ids, query_pe, key_pe)
 | |
| 
 | |
|             key_value = self.kv_b_proj(compressed_kv)
 | |
|             key_value = key_value.reshape([
 | |
|                 -1, self.num_attention_heads_tp,
 | |
|                 self.qk_nope_head_dim + self.v_head_dim
 | |
|             ])
 | |
|             key_nope, value = key_value.split(
 | |
|                 [self.qk_nope_head_dim, self.v_head_dim], axis=-1)
 | |
| 
 | |
|             query[..., self.qk_nope_head_dim:] = query_pe
 | |
|             key = paddle.empty_like(query)
 | |
|             key[..., :self.qk_nope_head_dim] = key_nope
 | |
|             key[..., self.qk_nope_head_dim:] = key_pe
 | |
|             value = paddle.nn.functional.pad(
 | |
|                 value, [0, self.qk_head_dim - self.v_head_dim], value=0)
 | |
| 
 | |
|             fmha_out_prefill = self.mla_attn(q=query,
 | |
|                                              k=key,
 | |
|                                              v=value,
 | |
|                                              qkv=None,
 | |
|                                              compressed_kv=compressed_kv,
 | |
|                                              k_pe=key_pe,
 | |
|                                              forward_meta=forward_meta)
 | |
| 
 | |
|             fmha_out_prefill = fmha_out_prefill.reshape(
 | |
|                 [-1, self.num_attention_heads_tp, self.qk_head_dim])
 | |
|             fmha_out_prefill = fmha_out_prefill[:, :, :self.v_head_dim]
 | |
|             fmha_out_prefill = fmha_out_prefill.reshape(
 | |
|                 [-1, self.num_attention_heads_tp * self.v_head_dim])
 | |
|             fmha_out_prefill = fmha_out_prefill * mask_encoder_batch.cast(
 | |
|                 fmha_out_prefill.dtype)
 | |
| 
 | |
|             fmha_out = fmha_out + fmha_out_prefill
 | |
|         if forward_meta.max_dec_len_this_time:
 | |
|             query = self.q_a_proj(layernorm_out)
 | |
|             query = self.q_a_layernorm(query)
 | |
|             ln_out_or_q_c = query
 | |
| 
 | |
|             compressed_kv = self.kv_a_proj_with_mqa(layernorm_out)
 | |
|             compressed_kv, key_pe = compressed_kv.split(
 | |
|                 [self.kv_lora_rank, self.qk_rope_head_dim], axis=-1)
 | |
|             key_pe = key_pe.reshape([-1, 1, self.qk_rope_head_dim])
 | |
|             compressed_kv = self.kv_a_layernorm(compressed_kv)
 | |
| 
 | |
|             query = self.q_b_proj(ln_out_or_q_c)
 | |
|             query = query.reshape(
 | |
|                 [-1, self.num_attention_heads_tp, self.qk_head_dim])
 | |
| 
 | |
|             query_nope, query_pe = query.split(
 | |
|                 [self.qk_nope_head_dim, self.qk_rope_head_dim], axis=-1)
 | |
|             query_pe, key_pe = self.rotary_emb(position_ids, query_pe, key_pe)
 | |
| 
 | |
|             q_nope_out = self.kv_b_proj_bmm(query_nope.transpose([1, 0, 2]),
 | |
|                                             proj_type='k').transpose([1, 0, 2])
 | |
| 
 | |
|             q_input = paddle.concat([q_nope_out, query_pe], axis=-1)
 | |
|             q_input = q_input.reshape([
 | |
|                 -1,
 | |
|                 self.num_attention_heads_tp *
 | |
|                 (self.kv_lora_rank + self.qk_rope_head_dim),
 | |
|             ])
 | |
|             fmha_out_decode = self.mla_attn(q=q_input,
 | |
|                                             k=None,
 | |
|                                             v=None,
 | |
|                                             qkv=None,
 | |
|                                             compressed_kv=compressed_kv,
 | |
|                                             k_pe=key_pe,
 | |
|                                             forward_meta=forward_meta)
 | |
| 
 | |
|             fmha_out_decode = fmha_out_decode.reshape(
 | |
|                 [-1, self.num_attention_heads_tp,
 | |
|                  self.kv_lora_rank]).transpose([1, 0, 2])
 | |
| 
 | |
|             fmha_out_decode = (self.kv_b_proj_bmm(
 | |
|                 fmha_out_decode, proj_type='v').transpose([1, 0, 2]).reshape(
 | |
|                     [-1, self.num_attention_heads_tp * self.v_head_dim]))
 | |
|             fmha_out = fmha_out + fmha_out_decode
 | |
| 
 | |
|         output = self.o_proj(fmha_out)
 | |
|         return output
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         """
 | |
|         self.q_a_proj.load_state_dict(state_dict)
 | |
|         self.q_a_layernorm.load_state_dict(state_dict)
 | |
|         self.kv_a_proj_with_mqa.load_state_dict(state_dict)
 | |
|         self.kv_a_layernorm.load_state_dict(state_dict)
 | |
|         self.q_b_proj.load_state_dict(state_dict)
 | |
|         self.kv_b_proj_bmm.load_state_dict(state_dict)
 | |
|         self.kv_b_proj.load_state_dict(state_dict)
 | |
|         # NOTE(Ryan):Make sure kv_b_proj_bmm loaded before kv_b_proj,
 | |
|         # The same weight key will be poped after kv_b_proj.
 | |
|         self.o_proj.load_state_dict(state_dict)
 | |
| 
 | |
| 
 | |
| class DeepSeekV3DecoderLayer(nn.Layer):
 | |
|     """
 | |
|     DeepSeekV3DecoderLayer
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig,
 | |
|         prefix: str = "",
 | |
|     ) -> None:
 | |
|         super().__init__()
 | |
|         layer_id = int(prefix.split(sep='.')[-1])
 | |
| 
 | |
|         self.self_attn = DeepseekV3MLAAttention(
 | |
|             fd_config=fd_config,
 | |
|             layer_id=layer_id,
 | |
|             prefix=f"{prefix}.self_attn",
 | |
|         )
 | |
| 
 | |
|         if (fd_config.model_config.deepseekv3.n_routed_experts is not None
 | |
|                 and layer_id
 | |
|                 >= fd_config.model_config.deepseekv3.first_k_dense_replace):
 | |
|             self.mlp = DeepSeekV3MoE(
 | |
|                 fd_config=fd_config,
 | |
|                 layer_id=layer_id,
 | |
|                 prefix=f"{prefix}.mlp",
 | |
|             )
 | |
|         else:
 | |
|             self.mlp = DeepSeekV3MLP(
 | |
|                 fd_config=fd_config,
 | |
|                 intermediate_size=fd_config.model_config.intermediate_size,
 | |
|                 prefix=f"{prefix}.mlp",
 | |
|             )
 | |
| 
 | |
|         self.input_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{prefix}.input_layernorm",
 | |
|         )
 | |
| 
 | |
|         self.post_attention_layernorm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix=f"{prefix}.post_attention_layernorm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         """
 | |
|         self.self_attn.load_state_dict(state_dict)
 | |
|         self.mlp.load_state_dict(state_dict)
 | |
|         self.input_layernorm.load_state_dict(state_dict)
 | |
|         self.post_attention_layernorm.load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         forward_meta: ForwardMeta,
 | |
|         hidden_states: paddle.Tensor,
 | |
|         residual: paddle.Tensor,
 | |
|         position_ids: paddle.Tensor,
 | |
|         mask_encoder_batch: paddle.Tensor,
 | |
|     ):
 | |
|         """
 | |
|         """
 | |
|         if residual is None:
 | |
|             residual = hidden_states
 | |
|             hidden_states = self.input_layernorm(hidden_states)
 | |
|         else:
 | |
|             hidden_states, residual = self.input_layernorm(
 | |
|                 hidden_states, residual)
 | |
| 
 | |
|         hidden_states = self.self_attn(forward_meta, hidden_states,
 | |
|                                        position_ids, mask_encoder_batch)
 | |
| 
 | |
|         hidden_states, residual = self.post_attention_layernorm(
 | |
|             hidden_states, residual)
 | |
|         hidden_states = self.mlp(hidden_states)
 | |
|         return hidden_states, residual
 | |
| 
 | |
| 
 | |
| class DeepSeekV3Model(nn.Layer):
 | |
|     """
 | |
|     DeepSeekV3Model
 | |
|     """
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         fd_config: FDConfig = None,
 | |
|     ):
 | |
|         """
 | |
|         Initializer for the DeepSeekV3Model class.
 | |
|         """
 | |
|         super().__init__()
 | |
|         self.num_layers = fd_config.model_config.num_layers
 | |
|         fd_config.model_config.prefix_name = "deepseek_v3"
 | |
| 
 | |
|         self.embeddings = VocabParallelEmbedding(
 | |
|             fd_config,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             params_dtype=paddle.get_default_dtype(),
 | |
|             prefix="deepseek_v3.embed_tokens",
 | |
|         )
 | |
| 
 | |
|         self.decoder_layers = nn.LayerList([
 | |
|             DeepSeekV3DecoderLayer(
 | |
|                 fd_config,
 | |
|                 prefix=f"{fd_config.model_config.prefix_name}.layers.{i}")
 | |
|             for i in range(self.num_layers)
 | |
|         ])
 | |
| 
 | |
|         self.norm = RMSNorm(
 | |
|             fd_config,
 | |
|             hidden_size=fd_config.model_config.hidden_size,
 | |
|             eps=fd_config.model_config.rms_norm_eps,
 | |
|             prefix="deepseek_v3.norm",
 | |
|         )
 | |
| 
 | |
|     def load_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
|         """
 | |
|         self.embeddings.load_state_dict(state_dict)
 | |
|         self.norm.load_state_dict(state_dict)
 | |
|         for i in range(self.num_layers):
 | |
|             logger.info(f"Start load layer {i}")
 | |
|             self.decoder_layers[i].load_state_dict(state_dict)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|         position_ids: paddle.Tensor,
 | |
|         mask_encoder_batch: paddle.Tensor,
 | |
|     ):
 | |
|         """
 | |
|         """
 | |
|         hidden_states = self.embeddings(ids_remove_padding=ids_remove_padding)
 | |
| 
 | |
|         residual = None
 | |
|         for i in range(self.num_layers):
 | |
|             hidden_states, residual = self.decoder_layers[i](
 | |
|                 forward_meta, hidden_states, residual, position_ids,
 | |
|                 mask_encoder_batch)
 | |
|         hidden_states = hidden_states + residual
 | |
|         out = self.norm(hidden_states)
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
| class DeepseekV3ForCausalLM(ModelForCasualLM):
 | |
|     """
 | |
|     DeepseekV3ForCausalLM
 | |
|     """
 | |
| 
 | |
|     def __init__(self, fd_config: FDConfig):
 | |
|         """
 | |
|         Args:
 | |
|             fd_config (FDConfig): Configurations for the LLM model.
 | |
|         """
 | |
|         super().__init__(fd_config)
 | |
|         self.model = DeepSeekV3Model(fd_config)
 | |
|         self.ori_vocab_size = fd_config.model_config.ori_vocab_size
 | |
|         self.lm_head = ParallelLMHead(
 | |
|             fd_config,
 | |
|             embedding_dim=fd_config.model_config.hidden_size,
 | |
|             num_embeddings=fd_config.model_config.vocab_size,
 | |
|             prefix="lm_head",
 | |
|         )
 | |
| 
 | |
|     @classmethod
 | |
|     def name(cls):
 | |
|         """
 | |
|         """
 | |
|         return "DeepseekV3ForCausalLM"
 | |
| 
 | |
|     @paddle.no_grad()
 | |
|     def set_state_dict(self, state_dict):
 | |
|         """
 | |
|         Load model parameters from a given state dictionary.
 | |
|         """
 | |
|         self.model.load_state_dict(state_dict)
 | |
|         self.lm_head.load_state_dict(state_dict)
 | |
| 
 | |
|     def compute_logits(self, hidden_states: paddle.Tensor):
 | |
|         """
 | |
|         """
 | |
|         logits = self.lm_head(hidden_states)
 | |
|         logits = paddle.cast(logits, paddle.float32)
 | |
|         logits[:, self.ori_vocab_size:] = -float("inf")
 | |
|         return logits
 | |
| 
 | |
|     def pre_process(self, forward_meta):
 | |
|         """
 | |
|         """
 | |
|         seq_lens_encoder = forward_meta.seq_lens_encoder
 | |
|         seq_lens_decoder = forward_meta.seq_lens_decoder
 | |
|         seq_lens_this_time = forward_meta.seq_lens_this_time
 | |
|         position_ids_shape = paddle.sum(seq_lens_this_time)
 | |
|         position_ids = paddle.empty(shape=position_ids_shape,
 | |
|                                     dtype=seq_lens_encoder.dtype)
 | |
|         mask_encoder_batch = paddle.empty(
 | |
|             shape=position_ids_shape,
 | |
|             dtype=seq_lens_encoder.dtype).unsqueeze(1)
 | |
| 
 | |
|         get_position_ids_and_mask_encoder_batch(seq_lens_encoder,
 | |
|                                                 seq_lens_decoder,
 | |
|                                                 seq_lens_this_time,
 | |
|                                                 position_ids,
 | |
|                                                 mask_encoder_batch)
 | |
| 
 | |
|         return position_ids, mask_encoder_batch
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         ids_remove_padding: paddle.Tensor,
 | |
|         forward_meta: ForwardMeta,
 | |
|     ):
 | |
|         """
 | |
|         """
 | |
|         position_ids, mask_encoder_batch = self.pre_process(forward_meta)
 | |
|         hidden_states = self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta,
 | |
|             position_ids=position_ids, mask_encoder_batch=mask_encoder_batch)
 | |
|         return hidden_states
 | |
| 
 | |
| 
 | |
| class DeepSeekV3PretrainedModel(PretrainedModel):
 | |
|     """
 | |
|     DeepSeekV3PretrainedModel
 | |
|     """
 | |
| 
 | |
|     config_class = FDConfig
 | |
| 
 | |
|     def _init_weight(self, layer):
 | |
|         """
 | |
|         _init_weight
 | |
|         """
 | |
|         return None
 | |
| 
 | |
|     @classmethod
 | |
|     def _get_tensor_parallel_mappings(cls, config, is_split=True):
 | |
| 
 | |
|         logger.info("DeepseekV3 inference model _get_tensor_parallel_mappings")
 | |
| 
 | |
|         from paddleformers.transformers.conversion_utils import \
 | |
|             split_or_merge_func
 | |
|         fn = split_or_merge_func(
 | |
|             is_split=is_split,
 | |
|             tensor_parallel_degree=config.tensor_parallel_degree,
 | |
|             tensor_parallel_rank=config.tensor_parallel_rank,
 | |
|             num_attention_heads=config.num_attention_heads,
 | |
|         )
 | |
| 
 | |
|         def get_tensor_parallel_split_mappings(num_layers):
 | |
|             final_actions = {}
 | |
| 
 | |
|             base_actions = {
 | |
|                 "lm_head.weight": partial(fn, is_column=True),
 | |
|                 "embed_tokens.weight": partial(fn, is_column=False),
 | |
|                 "layers.0.self_attn.o_proj.weight": partial(fn,
 | |
|                                                             is_column=False),
 | |
|             }
 | |
| 
 | |
|             # Self Attention Layer which are need TP.
 | |
|             base_actions["layers.0.self_attn.q_b_proj.weight"] = partial(
 | |
|                 fn, is_column=True)
 | |
|             base_actions["layers.0.self_attn.kv_b_proj.weight"] = partial(
 | |
|                 fn, is_column=True)
 | |
|             base_actions[
 | |
|                 "layers.0.self_attn.q_b_proj.weight_scale_inv"] = partial(
 | |
|                     fn, is_column=True)
 | |
|             base_actions[
 | |
|                 "layers.0.self_attn.kv_b_proj.weight_scale_inv"] = partial(
 | |
|                     fn, is_column=True)
 | |
| 
 | |
|             # MLP Layer
 | |
|             base_actions["layers.0.mlp.gate_proj.weight"] = partial(
 | |
|                 fn, is_column=True)
 | |
|             base_actions["layers.0.mlp.up_proj.weight"] = partial(
 | |
|                 fn, is_column=True)
 | |
|             base_actions["layers.0.mlp.down_proj.weight"] = partial(
 | |
|                 fn, is_column=False)
 | |
| 
 | |
|             # Moe Layer
 | |
|             for expert_idx in range(config.n_routed_experts):
 | |
|                 base_actions[
 | |
|                     f"layers.0.mlp.experts.{expert_idx}.up_proj.weight"] = partial(
 | |
|                         fn, is_column=True)
 | |
|                 base_actions[
 | |
|                     f"layers.0.mlp.experts.{expert_idx}.gate_proj.weight"] = partial(
 | |
|                         fn, is_column=True)
 | |
|                 base_actions[
 | |
|                     f"layers.0.mlp.experts.{expert_idx}.down_proj.weight"] = partial(
 | |
|                         fn, is_column=False)
 | |
| 
 | |
|             # Shared Expert Layer
 | |
|             base_actions[
 | |
|                 "layers.0.mlp.shared_experts.up_proj.weight"] = partial(
 | |
|                     fn, is_column=True)
 | |
|             base_actions[
 | |
|                 "layers.0.mlp.shared_experts.gate_proj.weight"] = partial(
 | |
|                     fn, is_column=True)
 | |
|             base_actions[
 | |
|                 "layers.0.mlp.shared_experts.down_proj.weight"] = partial(
 | |
|                     fn, is_column=False)
 | |
| 
 | |
|             # MTP parts
 | |
|             base_actions["layers.61.embed_tokens.weight"] = partial(
 | |
|                 fn, is_column=False)
 | |
|             base_actions["layers.61.eh_proj.weight"] = partial(fn,
 | |
|                                                                is_column=True)
 | |
|             base_actions["layers.61.shared_head.head.weight"] = partial(
 | |
|                 fn, is_column=True)
 | |
| 
 | |
|             for key, action in base_actions.items():
 | |
|                 if "layers.0." in key:
 | |
|                     for i in range(num_layers):
 | |
|                         final_actions[key.replace("layers.0.",
 | |
|                                                   f"layers.{i}.")] = action
 | |
|                 final_actions[key] = action
 | |
| 
 | |
|             return final_actions
 | |
| 
 | |
|         mappings = get_tensor_parallel_split_mappings(config.num_layers)
 | |
|         return mappings
 | 
