mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 18:11:00 +08:00
205 lines
7.5 KiB
C++
205 lines
7.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
// import basic and product tests for deprecated DynamicSparseMatrix
|
|
#if 0 // sparse_basic(DynamicSparseMatrix) does not compile at all -> disabled
|
|
static long g_realloc_count = 0;
|
|
#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
|
|
|
|
static long g_dense_op_sparse_count = 0;
|
|
#define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN \
|
|
g_dense_op_sparse_count++;
|
|
#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN \
|
|
g_dense_op_sparse_count += 10;
|
|
#define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN \
|
|
g_dense_op_sparse_count += 20;
|
|
|
|
#define EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA 1
|
|
#endif
|
|
|
|
#define EIGEN_NO_DEPRECATED_WARNING
|
|
// Disable counting of temporaries, since sparse_product(DynamicSparseMatrix)
|
|
// has an extra copy-assignment.
|
|
#define EIGEN_SPARSE_PRODUCT_IGNORE_TEMPORARY_COUNT
|
|
#include "sparse_product.cpp"
|
|
|
|
#if 0 // sparse_basic(DynamicSparseMatrix) does not compile at all -> disabled
|
|
#include "sparse_basic.cpp"
|
|
#endif
|
|
|
|
#include <Eigen/SparseExtra>
|
|
|
|
template <typename SetterType, typename DenseType, typename Scalar, int Options>
|
|
bool test_random_setter(SparseMatrix<Scalar, Options>& sm, const DenseType& ref,
|
|
const std::vector<Vector2i>& nonzeroCoords) {
|
|
{
|
|
sm.setZero();
|
|
SetterType w(sm);
|
|
std::vector<Vector2i> remaining = nonzeroCoords;
|
|
while (!remaining.empty()) {
|
|
int i = internal::random<int>(0, static_cast<int>(remaining.size()) - 1);
|
|
w(remaining[i].x(), remaining[i].y()) =
|
|
ref.coeff(remaining[i].x(), remaining[i].y());
|
|
remaining[i] = remaining.back();
|
|
remaining.pop_back();
|
|
}
|
|
}
|
|
return sm.isApprox(ref);
|
|
}
|
|
|
|
template <typename SetterType, typename DenseType, typename T>
|
|
bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref,
|
|
const std::vector<Vector2i>& nonzeroCoords) {
|
|
sm.setZero();
|
|
std::vector<Vector2i> remaining = nonzeroCoords;
|
|
while (!remaining.empty()) {
|
|
int i = internal::random<int>(0, static_cast<int>(remaining.size()) - 1);
|
|
sm.coeffRef(remaining[i].x(), remaining[i].y()) =
|
|
ref.coeff(remaining[i].x(), remaining[i].y());
|
|
remaining[i] = remaining.back();
|
|
remaining.pop_back();
|
|
}
|
|
return sm.isApprox(ref);
|
|
}
|
|
|
|
template <typename SparseMatrixType>
|
|
void sparse_extra(const SparseMatrixType& ref) {
|
|
const Index rows = ref.rows();
|
|
const Index cols = ref.cols();
|
|
typedef typename SparseMatrixType::Scalar Scalar;
|
|
enum { Flags = SparseMatrixType::Flags };
|
|
|
|
double density = (std::max)(8. / (rows * cols), 0.01);
|
|
typedef Matrix<Scalar, Dynamic, Dynamic> DenseMatrix;
|
|
typedef Matrix<Scalar, Dynamic, 1> DenseVector;
|
|
Scalar eps = 1e-6;
|
|
|
|
SparseMatrixType m(rows, cols);
|
|
DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
|
|
DenseVector vec1 = DenseVector::Random(rows);
|
|
|
|
std::vector<Vector2i> zeroCoords;
|
|
std::vector<Vector2i> nonzeroCoords;
|
|
initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
|
|
|
|
if (zeroCoords.size() == 0 || nonzeroCoords.size() == 0) return;
|
|
|
|
// test coeff and coeffRef
|
|
for (int i = 0; i < (int)zeroCoords.size(); ++i) {
|
|
VERIFY_IS_MUCH_SMALLER_THAN(m.coeff(zeroCoords[i].x(), zeroCoords[i].y()),
|
|
eps);
|
|
if (internal::is_same<SparseMatrixType,
|
|
SparseMatrix<Scalar, Flags> >::value)
|
|
VERIFY_RAISES_ASSERT(m.coeffRef(zeroCoords[0].x(), zeroCoords[0].y()) =
|
|
5);
|
|
}
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
|
|
m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
|
|
|
|
VERIFY_IS_APPROX(m, refMat);
|
|
|
|
// random setter
|
|
// {
|
|
// m.setZero();
|
|
// VERIFY_IS_NOT_APPROX(m, refMat);
|
|
// SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
|
|
// std::vector<Vector2i> remaining = nonzeroCoords;
|
|
// while(!remaining.empty())
|
|
// {
|
|
// int i = internal::random<int>(0,remaining.size()-1);
|
|
// w->coeffRef(remaining[i].x(),remaining[i].y()) =
|
|
// refMat.coeff(remaining[i].x(),remaining[i].y());
|
|
// remaining[i] = remaining.back();
|
|
// remaining.pop_back();
|
|
// }
|
|
// }
|
|
// VERIFY_IS_APPROX(m, refMat);
|
|
|
|
VERIFY((test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(
|
|
m, refMat, nonzeroCoords)));
|
|
#ifdef EIGEN_UNORDERED_MAP_SUPPORT
|
|
VERIFY((test_random_setter<
|
|
RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(
|
|
m, refMat, nonzeroCoords)));
|
|
#endif
|
|
#ifdef _DENSE_HASH_MAP_H_
|
|
VERIFY((test_random_setter<
|
|
RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(
|
|
m, refMat, nonzeroCoords)));
|
|
#endif
|
|
#ifdef _SPARSE_HASH_MAP_H_
|
|
VERIFY((test_random_setter<
|
|
RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(
|
|
m, refMat, nonzeroCoords)));
|
|
#endif
|
|
|
|
// test RandomSetter
|
|
/*{
|
|
SparseMatrixType m1(rows,cols), m2(rows,cols);
|
|
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
|
|
initSparse<Scalar>(density, refM1, m1);
|
|
{
|
|
Eigen::RandomSetter<SparseMatrixType > setter(m2);
|
|
for (int j=0; j<m1.outerSize(); ++j)
|
|
for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i)
|
|
setter(i.index(), j) = i.value();
|
|
}
|
|
VERIFY_IS_APPROX(m1, m2);
|
|
}*/
|
|
}
|
|
|
|
template <typename SparseMatrixType>
|
|
void check_marketio() {
|
|
typedef Matrix<typename SparseMatrixType::Scalar, Dynamic, Dynamic>
|
|
DenseMatrix;
|
|
Index rows = internal::random<Index>(1, 100);
|
|
Index cols = internal::random<Index>(1, 100);
|
|
SparseMatrixType m1, m2;
|
|
m1 = DenseMatrix::Random(rows, cols).sparseView();
|
|
saveMarket(m1, "sparse_extra.mtx");
|
|
loadMarket(m2, "sparse_extra.mtx");
|
|
VERIFY_IS_EQUAL(DenseMatrix(m1), DenseMatrix(m2));
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(sparse_extra) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
int s = Eigen::internal::random<int>(1, 50);
|
|
CALL_SUBTEST_1(sparse_extra(SparseMatrix<double>(8, 8)));
|
|
CALL_SUBTEST_2(sparse_extra(SparseMatrix<std::complex<double> >(s, s)));
|
|
CALL_SUBTEST_1(sparse_extra(SparseMatrix<double>(s, s)));
|
|
|
|
CALL_SUBTEST_3(sparse_extra(DynamicSparseMatrix<double>(s, s)));
|
|
// CALL_SUBTEST_3(( sparse_basic(DynamicSparseMatrix<double>(s, s)) ));
|
|
// CALL_SUBTEST_3(( sparse_basic(DynamicSparseMatrix<double,ColMajor,long
|
|
// int>(s, s)) ));
|
|
|
|
CALL_SUBTEST_3((sparse_product<DynamicSparseMatrix<float, ColMajor> >()));
|
|
CALL_SUBTEST_3((sparse_product<DynamicSparseMatrix<float, RowMajor> >()));
|
|
|
|
CALL_SUBTEST_4((check_marketio<SparseMatrix<float, ColMajor, int> >()));
|
|
CALL_SUBTEST_4((check_marketio<SparseMatrix<double, ColMajor, int> >()));
|
|
CALL_SUBTEST_4(
|
|
(check_marketio<SparseMatrix<std::complex<float>, ColMajor, int> >()));
|
|
CALL_SUBTEST_4(
|
|
(check_marketio<SparseMatrix<std::complex<double>, ColMajor, int> >()));
|
|
CALL_SUBTEST_4(
|
|
(check_marketio<SparseMatrix<float, ColMajor, long int> >()));
|
|
CALL_SUBTEST_4(
|
|
(check_marketio<SparseMatrix<double, ColMajor, long int> >()));
|
|
CALL_SUBTEST_4((check_marketio<
|
|
SparseMatrix<std::complex<float>, ColMajor, long int> >()));
|
|
CALL_SUBTEST_4(
|
|
(check_marketio<
|
|
SparseMatrix<std::complex<double>, ColMajor, long int> >()));
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s);
|
|
}
|
|
}
|