Files
FastDeploy/third_party/eigen/test/visitor.cpp
Jack Zhou 355382ad63 Move eigen to third party (#282)
* remove useless statement

* Add eigen to third_party dir

* remove reducdant lines
2022-09-26 19:24:02 +08:00

128 lines
3.9 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template <typename MatrixType>
void matrixVisitor(const MatrixType& p) {
typedef typename MatrixType::Scalar Scalar;
Index rows = p.rows();
Index cols = p.cols();
// construct a random matrix where all coefficients are different
MatrixType m;
m = MatrixType::Random(rows, cols);
for (Index i = 0; i < m.size(); i++)
for (Index i2 = 0; i2 < i; i2++)
while (m(i) == m(i2)) // yes, ==
m(i) = internal::random<Scalar>();
Scalar minc = Scalar(1000), maxc = Scalar(-1000);
Index minrow = 0, mincol = 0, maxrow = 0, maxcol = 0;
for (Index j = 0; j < cols; j++)
for (Index i = 0; i < rows; i++) {
if (m(i, j) < minc) {
minc = m(i, j);
minrow = i;
mincol = j;
}
if (m(i, j) > maxc) {
maxc = m(i, j);
maxrow = i;
maxcol = j;
}
}
Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
Scalar eigen_minc, eigen_maxc;
eigen_minc = m.minCoeff(&eigen_minrow, &eigen_mincol);
eigen_maxc = m.maxCoeff(&eigen_maxrow, &eigen_maxcol);
VERIFY(minrow == eigen_minrow);
VERIFY(maxrow == eigen_maxrow);
VERIFY(mincol == eigen_mincol);
VERIFY(maxcol == eigen_maxcol);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, m.minCoeff());
VERIFY_IS_APPROX(maxc, m.maxCoeff());
eigen_maxc = (m.adjoint() * m).maxCoeff(&eigen_maxrow, &eigen_maxcol);
eigen_maxc = (m.adjoint() * m).eval().maxCoeff(&maxrow, &maxcol);
VERIFY(maxrow == eigen_maxrow);
VERIFY(maxcol == eigen_maxcol);
}
template <typename VectorType>
void vectorVisitor(const VectorType& w) {
typedef typename VectorType::Scalar Scalar;
Index size = w.size();
// construct a random vector where all coefficients are different
VectorType v;
v = VectorType::Random(size);
for (Index i = 0; i < size; i++)
for (Index i2 = 0; i2 < i; i2++)
while (v(i) == v(i2)) // yes, ==
v(i) = internal::random<Scalar>();
Scalar minc = v(0), maxc = v(0);
Index minidx = 0, maxidx = 0;
for (Index i = 0; i < size; i++) {
if (v(i) < minc) {
minc = v(i);
minidx = i;
}
if (v(i) > maxc) {
maxc = v(i);
maxidx = i;
}
}
Index eigen_minidx, eigen_maxidx;
Scalar eigen_minc, eigen_maxc;
eigen_minc = v.minCoeff(&eigen_minidx);
eigen_maxc = v.maxCoeff(&eigen_maxidx);
VERIFY(minidx == eigen_minidx);
VERIFY(maxidx == eigen_maxidx);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, v.minCoeff());
VERIFY_IS_APPROX(maxc, v.maxCoeff());
Index idx0 = internal::random<Index>(0, size - 1);
Index idx1 = eigen_minidx;
Index idx2 = eigen_maxidx;
VectorType v1(v), v2(v);
v1(idx0) = v1(idx1);
v2(idx0) = v2(idx2);
v1.minCoeff(&eigen_minidx);
v2.maxCoeff(&eigen_maxidx);
VERIFY(eigen_minidx == (std::min)(idx0, idx1));
VERIFY(eigen_maxidx == (std::min)(idx0, idx2));
}
EIGEN_DECLARE_TEST(visitor) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(matrixVisitor(Matrix<float, 1, 1>()));
CALL_SUBTEST_2(matrixVisitor(Matrix2f()));
CALL_SUBTEST_3(matrixVisitor(Matrix4d()));
CALL_SUBTEST_4(matrixVisitor(MatrixXd(8, 12)));
CALL_SUBTEST_5(
matrixVisitor(Matrix<double, Dynamic, Dynamic, RowMajor>(20, 20)));
CALL_SUBTEST_6(matrixVisitor(MatrixXi(8, 12)));
}
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_7(vectorVisitor(Vector4f()));
CALL_SUBTEST_7(vectorVisitor(Matrix<int, 12, 1>()));
CALL_SUBTEST_8(vectorVisitor(VectorXd(10)));
CALL_SUBTEST_9(vectorVisitor(RowVectorXd(10)));
CALL_SUBTEST_10(vectorVisitor(VectorXf(33)));
}
}