Files
FastDeploy/third_party/eigen/test/svd_common.h
Jack Zhou 355382ad63 Move eigen to third party (#282)
* remove useless statement

* Add eigen to third_party dir

* remove reducdant lines
2022-09-26 19:24:02 +08:00

527 lines
19 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SVD_DEFAULT
#error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
#endif
#ifndef SVD_FOR_MIN_NORM
#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
#endif
#include "solverbase.h"
#include "svd_fill.h"
// Check that the matrix m is properly reconstructed and that the U and V
// factors are unitary
// The SVD must have already been computed.
template <typename SvdType, typename MatrixType>
void svd_check_full(const MatrixType& m, const SvdType& svd) {
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
MatrixType sigma = MatrixType::Zero(rows, cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
MatrixVType v = svd.matrixV();
RealScalar scaling = m.cwiseAbs().maxCoeff();
if (scaling < (std::numeric_limits<RealScalar>::min)()) {
VERIFY(sigma.cwiseAbs().maxCoeff() <=
(std::numeric_limits<RealScalar>::min)());
} else {
VERIFY_IS_APPROX(m / scaling, u * (sigma / scaling) * v.adjoint());
}
VERIFY_IS_UNITARY(u);
VERIFY_IS_UNITARY(v);
}
// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
template <typename SvdType, typename MatrixType>
void svd_compare_to_full(const MatrixType& m, unsigned int computationOptions,
const SvdType& referenceSvd) {
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
Index diagSize = (std::min)(rows, cols);
RealScalar prec = test_precision<RealScalar>();
SvdType svd(m, computationOptions);
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
if (computationOptions & (ComputeFullV | ComputeThinV)) {
VERIFY((svd.matrixV().adjoint() * svd.matrixV()).isIdentity(prec));
VERIFY_IS_APPROX(svd.matrixV().leftCols(diagSize) *
svd.singularValues().asDiagonal() *
svd.matrixV().leftCols(diagSize).adjoint(),
referenceSvd.matrixV().leftCols(diagSize) *
referenceSvd.singularValues().asDiagonal() *
referenceSvd.matrixV().leftCols(diagSize).adjoint());
}
if (computationOptions & (ComputeFullU | ComputeThinU)) {
VERIFY((svd.matrixU().adjoint() * svd.matrixU()).isIdentity(prec));
VERIFY_IS_APPROX(
svd.matrixU().leftCols(diagSize) *
svd.singularValues().cwiseAbs2().asDiagonal() *
svd.matrixU().leftCols(diagSize).adjoint(),
referenceSvd.matrixU().leftCols(diagSize) *
referenceSvd.singularValues().cwiseAbs2().asDiagonal() *
referenceSvd.matrixU().leftCols(diagSize).adjoint());
}
// The following checks are not critical.
// For instance, with Dived&Conquer SVD, if only the factor 'V' is computedt
// then different matrix-matrix product implementation will be used
// and the resulting 'V' factor might be significantly different when the SVD
// decomposition is not unique, especially with single precision float.
++g_test_level;
if (computationOptions & ComputeFullU)
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
if (computationOptions & ComputeThinU)
VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if (computationOptions & ComputeFullV)
VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(),
referenceSvd.matrixV().cwiseAbs());
if (computationOptions & ComputeThinV)
VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
--g_test_level;
}
//
template <typename SvdType, typename MatrixType>
void svd_least_square(const MatrixType& m, unsigned int computationOptions) {
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
SvdType svd(m, computationOptions);
if (internal::is_same<RealScalar, double>::value)
svd.setThreshold(1e-8);
else if (internal::is_same<RealScalar, float>::value)
svd.setThreshold(2e-4);
SolutionType x = svd.solve(rhs);
RealScalar residual = (m * x - rhs).norm();
RealScalar rhs_norm = rhs.norm();
if (!test_isMuchSmallerThan(residual, rhs.norm())) {
// ^^^ If the residual is very small, then we have an exact solution, so we
// are already good.
// evaluate normal equation which works also for least-squares solutions
if (internal::is_same<RealScalar, double>::value ||
svd.rank() == m.diagonal().size()) {
using std::sqrt;
// This test is not stable with single precision.
// This is probably because squaring m signicantly affects the precision.
if (internal::is_same<RealScalar, float>::value) ++g_test_level;
VERIFY_IS_APPROX(m.adjoint() * (m * x), m.adjoint() * rhs);
if (internal::is_same<RealScalar, float>::value) --g_test_level;
}
// Check that there is no significantly better solution in the neighborhood
// of x
for (Index k = 0; k < x.rows(); ++k) {
using std::abs;
SolutionType y(x);
y.row(k) =
(RealScalar(1) + 2 * NumTraits<RealScalar>::epsilon()) * x.row(k);
RealScalar residual_y = (m * y - rhs).norm();
VERIFY(test_isMuchSmallerThan(abs(residual_y - residual), rhs_norm) ||
residual < residual_y);
if (internal::is_same<RealScalar, float>::value) ++g_test_level;
VERIFY(test_isApprox(residual_y, residual) || residual < residual_y);
if (internal::is_same<RealScalar, float>::value) --g_test_level;
y.row(k) =
(RealScalar(1) - 2 * NumTraits<RealScalar>::epsilon()) * x.row(k);
residual_y = (m * y - rhs).norm();
VERIFY(test_isMuchSmallerThan(abs(residual_y - residual), rhs_norm) ||
residual < residual_y);
if (internal::is_same<RealScalar, float>::value) ++g_test_level;
VERIFY(test_isApprox(residual_y, residual) || residual < residual_y);
if (internal::is_same<RealScalar, float>::value) --g_test_level;
}
}
}
// check minimal norm solutions, the inoput matrix m is only used to recover
// problem size
template <typename MatrixType>
void svd_min_norm(const MatrixType& m, unsigned int computationOptions) {
typedef typename MatrixType::Scalar Scalar;
Index cols = m.cols();
enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime };
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
// generate a full-rank m x n problem with m<n
enum {
RankAtCompileTime2 =
ColsAtCompileTime == Dynamic ? Dynamic : (ColsAtCompileTime) / 2 + 1,
RowsAtCompileTime3 =
ColsAtCompileTime == Dynamic ? Dynamic : ColsAtCompileTime + 1
};
typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
Index rank = RankAtCompileTime2 == Dynamic ? internal::random<Index>(1, cols)
: Index(RankAtCompileTime2);
MatrixType2 m2(rank, cols);
int guard = 0;
do {
m2.setRandom();
} while (SVD_FOR_MIN_NORM(MatrixType2)(m2)
.setThreshold(test_precision<Scalar>())
.rank() != rank &&
(++guard) < 10);
VERIFY(guard < 10);
RhsType2 rhs2 = RhsType2::Random(rank);
// use QR to find a reference minimal norm solution
HouseholderQR<MatrixType2T> qr(m2.adjoint());
Matrix<Scalar, Dynamic, 1> tmp = qr.matrixQR()
.topLeftCorner(rank, rank)
.template triangularView<Upper>()
.adjoint()
.solve(rhs2);
tmp.conservativeResize(cols);
tmp.tail(cols - rank).setZero();
SolutionType x21 = qr.householderQ() * tmp;
// now check with SVD
SVD_FOR_MIN_NORM(MatrixType2) svd2(m2, computationOptions);
SolutionType x22 = svd2.solve(rhs2);
VERIFY_IS_APPROX(m2 * x21, rhs2);
VERIFY_IS_APPROX(m2 * x22, rhs2);
VERIFY_IS_APPROX(x21, x22);
// Now check with a rank deficient matrix
typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
Index rows3 = RowsAtCompileTime3 == Dynamic
? internal::random<Index>(rank + 1, 2 * cols)
: Index(RowsAtCompileTime3);
Matrix<Scalar, RowsAtCompileTime3, Dynamic> C =
Matrix<Scalar, RowsAtCompileTime3, Dynamic>::Random(rows3, rank);
MatrixType3 m3 = C * m2;
RhsType3 rhs3 = C * rhs2;
SVD_FOR_MIN_NORM(MatrixType3) svd3(m3, computationOptions);
SolutionType x3 = svd3.solve(rhs3);
VERIFY_IS_APPROX(m3 * x3, rhs3);
VERIFY_IS_APPROX(m3 * x21, rhs3);
VERIFY_IS_APPROX(m2 * x3, rhs2);
VERIFY_IS_APPROX(x21, x3);
}
template <typename MatrixType, typename SolverType>
void svd_test_solvers(const MatrixType& m, const SolverType& solver) {
Index rows, cols, cols2;
rows = m.rows();
cols = m.cols();
if (MatrixType::ColsAtCompileTime == Dynamic) {
cols2 = internal::random<int>(2, EIGEN_TEST_MAX_SIZE);
} else {
cols2 = cols;
}
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime,
MatrixType::ColsAtCompileTime>
CMatrixType;
check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
}
// Check full, compare_to_full, least_square, and min_norm for all possible
// compute-options
template <typename SvdType, typename MatrixType>
void svd_test_all_computation_options(const MatrixType& m, bool full_only) {
// if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
// return;
STATIC_CHECK((internal::is_same<typename SvdType::StorageIndex, int>::value));
SvdType fullSvd(m, ComputeFullU | ComputeFullV);
CALL_SUBTEST((svd_check_full(m, fullSvd)));
CALL_SUBTEST((svd_least_square<SvdType>(m, ComputeFullU | ComputeFullV)));
CALL_SUBTEST((svd_min_norm(m, ComputeFullU | ComputeFullV)));
#if defined __INTEL_COMPILER
// remark #111: statement is unreachable
#pragma warning disable 111
#endif
svd_test_solvers(m, fullSvd);
if (full_only) return;
CALL_SUBTEST((svd_compare_to_full(m, ComputeFullU, fullSvd)));
CALL_SUBTEST((svd_compare_to_full(m, ComputeFullV, fullSvd)));
CALL_SUBTEST((svd_compare_to_full(m, 0, fullSvd)));
if (MatrixType::ColsAtCompileTime == Dynamic) {
// thin U/V are only available with dynamic number of columns
CALL_SUBTEST(
(svd_compare_to_full(m, ComputeFullU | ComputeThinV, fullSvd)));
CALL_SUBTEST((svd_compare_to_full(m, ComputeThinV, fullSvd)));
CALL_SUBTEST(
(svd_compare_to_full(m, ComputeThinU | ComputeFullV, fullSvd)));
CALL_SUBTEST((svd_compare_to_full(m, ComputeThinU, fullSvd)));
CALL_SUBTEST(
(svd_compare_to_full(m, ComputeThinU | ComputeThinV, fullSvd)));
CALL_SUBTEST((svd_least_square<SvdType>(m, ComputeFullU | ComputeThinV)));
CALL_SUBTEST((svd_least_square<SvdType>(m, ComputeThinU | ComputeFullV)));
CALL_SUBTEST((svd_least_square<SvdType>(m, ComputeThinU | ComputeThinV)));
CALL_SUBTEST((svd_min_norm(m, ComputeFullU | ComputeThinV)));
CALL_SUBTEST((svd_min_norm(m, ComputeThinU | ComputeFullV)));
CALL_SUBTEST((svd_min_norm(m, ComputeThinU | ComputeThinV)));
// test reconstruction
Index diagSize = (std::min)(m.rows(), m.cols());
SvdType svd(m, ComputeThinU | ComputeThinV);
VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) *
svd.singularValues().asDiagonal() *
svd.matrixV().leftCols(diagSize).adjoint());
}
}
// work around stupid msvc error when constructing at compile time an expression
// that involves
// a division by zero, even if the numeric type has floating point
template <typename Scalar>
EIGEN_DONT_INLINE Scalar zero() {
return Scalar(0);
}
// workaround aggressive optimization in ICC
template <typename T>
EIGEN_DONT_INLINE T sub(T a, T b) {
return a - b;
}
// all this function does is verify we don't iterate infinitely on nan/inf
// values
template <typename SvdType, typename MatrixType>
void svd_inf_nan() {
SvdType svd;
typedef typename MatrixType::Scalar Scalar;
Scalar some_inf = Scalar(1) / zero<Scalar>();
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
svd.compute(MatrixType::Constant(10, 10, some_inf),
ComputeFullU | ComputeFullV);
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
VERIFY(nan != nan);
svd.compute(MatrixType::Constant(10, 10, nan), ComputeFullU | ComputeFullV);
MatrixType m = MatrixType::Zero(10, 10);
m(internal::random<int>(0, 9), internal::random<int>(0, 9)) = some_inf;
svd.compute(m, ComputeFullU | ComputeFullV);
m = MatrixType::Zero(10, 10);
m(internal::random<int>(0, 9), internal::random<int>(0, 9)) = nan;
svd.compute(m, ComputeFullU | ComputeFullV);
// regression test for bug 791
m.resize(3, 3);
m << 0, 2 * NumTraits<Scalar>::epsilon(), 0.5, 0, -0.5, 0, nan, 0, 0;
svd.compute(m, ComputeFullU | ComputeFullV);
m.resize(4, 4);
m << 1, 0, 0, 0, 0, 3, 1, 2e-308, 1, 0, 1, nan, 0, nan, nan, 0;
svd.compute(m, ComputeFullU | ComputeFullV);
}
// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
template <typename>
void svd_underoverflow() {
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
Matrix2d M;
M << -7.90884e-313, -4.94e-324, 0, 5.60844e-313;
SVD_DEFAULT(Matrix2d) svd;
svd.compute(M, ComputeFullU | ComputeFullV);
CALL_SUBTEST(svd_check_full(M, svd));
// Check all 2x2 matrices made with the following coefficients:
VectorXd value_set(9);
value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324,
-4.94e-223, 4.94e-223;
Array4i id(0, 0, 0, 0);
int k = 0;
do {
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
svd.compute(M, ComputeFullU | ComputeFullV);
CALL_SUBTEST(svd_check_full(M, svd));
id(k)++;
if (id(k) >= value_set.size()) {
while (k < 3 && id(k) >= value_set.size()) id(++k)++;
id.head(k).setZero();
k = 0;
}
} while ((id < int(value_set.size())).all());
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
// Check for overflow:
Matrix3d M3;
M3 << 4.4331978442502944e+307, -5.8585363752028680e+307,
6.4527017443412964e+307, 3.7841695601406358e+307, 2.4331702789740617e+306,
-3.5235707140272905e+307, -8.7190887618028355e+307,
-7.3453213709232193e+307, -2.4367363684472105e+307;
SVD_DEFAULT(Matrix3d) svd3;
svd3.compute(M3, ComputeFullU |
ComputeFullV); // just check we don't loop indefinitely
CALL_SUBTEST(svd_check_full(M3, svd3));
}
// void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
template <typename MatrixType>
void svd_all_trivial_2x2(void (*cb)(const MatrixType&, bool)) {
MatrixType M;
VectorXd value_set(3);
value_set << 0, 1, -1;
Array4i id(0, 0, 0, 0);
int k = 0;
do {
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
cb(M, false);
id(k)++;
if (id(k) >= value_set.size()) {
while (k < 3 && id(k) >= value_set.size()) id(++k)++;
id.head(k).setZero();
k = 0;
}
} while ((id < int(value_set.size())).all());
}
template <typename>
void svd_preallocate() {
Vector3f v(3.f, 2.f, 1.f);
MatrixXf m = v.asDiagonal();
internal::set_is_malloc_allowed(false);
VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
SVD_DEFAULT(MatrixXf) svd;
internal::set_is_malloc_allowed(true);
svd.compute(m);
VERIFY_IS_APPROX(svd.singularValues(), v);
SVD_DEFAULT(MatrixXf) svd2(3, 3);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_RAISES_ASSERT(svd2.matrixU());
VERIFY_RAISES_ASSERT(svd2.matrixV());
svd2.compute(m, ComputeFullU | ComputeFullV);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
SVD_DEFAULT(MatrixXf) svd3(3, 3, ComputeFullU | ComputeFullV);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m, ComputeFullU | ComputeFullV);
internal::set_is_malloc_allowed(true);
}
template <typename SvdType, typename MatrixType>
void svd_verify_assert(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs(rows);
SvdType svd;
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.singularValues())
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
VERIFY_RAISES_ASSERT(svd.transpose().solve(rhs))
VERIFY_RAISES_ASSERT(svd.adjoint().solve(rhs))
MatrixType a = MatrixType::Zero(rows, cols);
a.setZero();
svd.compute(a, 0);
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.matrixV())
svd.singularValues();
VERIFY_RAISES_ASSERT(svd.solve(rhs))
if (ColsAtCompileTime == Dynamic) {
svd.compute(a, ComputeThinU);
svd.matrixU();
VERIFY_RAISES_ASSERT(svd.matrixV())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
svd.compute(a, ComputeThinV);
svd.matrixV();
VERIFY_RAISES_ASSERT(svd.matrixU())
VERIFY_RAISES_ASSERT(svd.solve(rhs))
} else {
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
}
}
#undef SVD_DEFAULT
#undef SVD_FOR_MIN_NORM