mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-16 13:41:30 +08:00
263 lines
9.5 KiB
C++
263 lines
9.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
template <typename MatrixType>
|
|
void syrk(const MatrixType& m) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
|
|
MatrixType::ColsAtCompileTime, RowMajor>
|
|
RMatrixType;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1;
|
|
typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2;
|
|
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic, RowMajor> Rhs3;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3 = MatrixType::Random(rows, cols);
|
|
RMatrixType rm2 = MatrixType::Random(rows, cols);
|
|
|
|
Rhs1 rhs1 = Rhs1::Random(internal::random<int>(1, 320), cols);
|
|
Rhs1 rhs11 = Rhs1::Random(rhs1.rows(), cols);
|
|
Rhs2 rhs2 = Rhs2::Random(rows, internal::random<int>(1, 320));
|
|
Rhs2 rhs22 = Rhs2::Random(rows, rhs2.cols());
|
|
Rhs3 rhs3 = Rhs3::Random(internal::random<int>(1, 320), rows);
|
|
|
|
Scalar s1 = internal::random<Scalar>();
|
|
|
|
Index c = internal::random<Index>(0, cols - 1);
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
(m2.template selfadjointView<Lower>().rankUpdate(rhs2, s1)._expression()),
|
|
((s1 * rhs2 * rhs2.adjoint())
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix()));
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
((m2.template triangularView<Lower>() += s1 * rhs2 * rhs22.adjoint())
|
|
.nestedExpression()),
|
|
((s1 * rhs2 * rhs22.adjoint())
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix()));
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
m2.template selfadjointView<Upper>().rankUpdate(rhs2, s1)._expression(),
|
|
(s1 * rhs2 * rhs2.adjoint())
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix());
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
(m2.template triangularView<Upper>() += s1 * rhs22 * rhs2.adjoint())
|
|
.nestedExpression(),
|
|
(s1 * rhs22 * rhs2.adjoint())
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix());
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(m2.template selfadjointView<Lower>()
|
|
.rankUpdate(rhs1.adjoint(), s1)
|
|
._expression(),
|
|
(s1 * rhs1.adjoint() * rhs1)
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix());
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
(m2.template triangularView<Lower>() += s1 * rhs11.adjoint() * rhs1)
|
|
.nestedExpression(),
|
|
(s1 * rhs11.adjoint() * rhs1)
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix());
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(m2.template selfadjointView<Upper>()
|
|
.rankUpdate(rhs1.adjoint(), s1)
|
|
._expression(),
|
|
(s1 * rhs1.adjoint() * rhs1)
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix());
|
|
VERIFY_IS_APPROX(
|
|
(m2.template triangularView<Upper>() = s1 * rhs1.adjoint() * rhs11)
|
|
.nestedExpression(),
|
|
(s1 * rhs1.adjoint() * rhs11)
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix());
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(m2.template selfadjointView<Lower>()
|
|
.rankUpdate(rhs3.adjoint(), s1)
|
|
._expression(),
|
|
(s1 * rhs3.adjoint() * rhs3)
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix());
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(m2.template selfadjointView<Upper>()
|
|
.rankUpdate(rhs3.adjoint(), s1)
|
|
._expression(),
|
|
(s1 * rhs3.adjoint() * rhs3)
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix());
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX((m2.template selfadjointView<Lower>()
|
|
.rankUpdate(m1.col(c), s1)
|
|
._expression()),
|
|
((s1 * m1.col(c) * m1.col(c).adjoint())
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix()));
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX((m2.template selfadjointView<Upper>()
|
|
.rankUpdate(m1.col(c), s1)
|
|
._expression()),
|
|
((s1 * m1.col(c) * m1.col(c).adjoint())
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix()));
|
|
rm2.setZero();
|
|
VERIFY_IS_APPROX((rm2.template selfadjointView<Upper>()
|
|
.rankUpdate(m1.col(c), s1)
|
|
._expression()),
|
|
((s1 * m1.col(c) * m1.col(c).adjoint())
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix()));
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX((m2.template triangularView<Upper>() +=
|
|
s1 * m3.col(c) * m1.col(c).adjoint())
|
|
.nestedExpression(),
|
|
((s1 * m3.col(c) * m1.col(c).adjoint())
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix()));
|
|
rm2.setZero();
|
|
VERIFY_IS_APPROX((rm2.template triangularView<Upper>() +=
|
|
s1 * m1.col(c) * m3.col(c).adjoint())
|
|
.nestedExpression(),
|
|
((s1 * m1.col(c) * m3.col(c).adjoint())
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix()));
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
(m2.template selfadjointView<Lower>()
|
|
.rankUpdate(m1.col(c).conjugate(), s1)
|
|
._expression()),
|
|
((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint())
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix()));
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
(m2.template selfadjointView<Upper>()
|
|
.rankUpdate(m1.col(c).conjugate(), s1)
|
|
._expression()),
|
|
((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint())
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix()));
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
(m2.template selfadjointView<Lower>()
|
|
.rankUpdate(m1.row(c), s1)
|
|
._expression()),
|
|
((s1 * m1.row(c).transpose() * m1.row(c).transpose().adjoint())
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix()));
|
|
rm2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
(rm2.template selfadjointView<Lower>()
|
|
.rankUpdate(m1.row(c), s1)
|
|
._expression()),
|
|
((s1 * m1.row(c).transpose() * m1.row(c).transpose().adjoint())
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix()));
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
(m2.template triangularView<Lower>() +=
|
|
s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
|
|
.nestedExpression(),
|
|
((s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix()));
|
|
rm2.setZero();
|
|
VERIFY_IS_APPROX(
|
|
(rm2.template triangularView<Lower>() +=
|
|
s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
|
|
.nestedExpression(),
|
|
((s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix()));
|
|
|
|
m2.setZero();
|
|
VERIFY_IS_APPROX((m2.template selfadjointView<Upper>()
|
|
.rankUpdate(m1.row(c).adjoint(), s1)
|
|
._expression()),
|
|
((s1 * m1.row(c).adjoint() * m1.row(c).adjoint().adjoint())
|
|
.eval()
|
|
.template triangularView<Upper>()
|
|
.toDenseMatrix()));
|
|
|
|
// destination with a non-default inner-stride
|
|
// see bug 1741
|
|
{
|
|
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
|
|
MatrixX buffer(2 * rows, 2 * cols);
|
|
Map<MatrixType, 0, Stride<Dynamic, 2> > map1(
|
|
buffer.data(), rows, cols, Stride<Dynamic, 2>(2 * rows, 2));
|
|
buffer.setZero();
|
|
VERIFY_IS_APPROX((map1.template selfadjointView<Lower>()
|
|
.rankUpdate(rhs2, s1)
|
|
._expression()),
|
|
((s1 * rhs2 * rhs2.adjoint())
|
|
.eval()
|
|
.template triangularView<Lower>()
|
|
.toDenseMatrix()));
|
|
}
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(product_syrk) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
int s;
|
|
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE);
|
|
CALL_SUBTEST_1(syrk(MatrixXf(s, s)));
|
|
CALL_SUBTEST_2(syrk(MatrixXd(s, s)));
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
|
|
|
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2);
|
|
CALL_SUBTEST_3(syrk(MatrixXcf(s, s)));
|
|
CALL_SUBTEST_4(syrk(MatrixXcd(s, s)));
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
|
}
|
|
}
|