mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
981 lines
34 KiB
C++
981 lines
34 KiB
C++
|
|
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include <cerrno>
|
|
#include <cstdlib>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <typeinfo>
|
|
#include <vector>
|
|
|
|
// The following includes of STL headers have to be done _before_ the
|
|
// definition of macros min() and max(). The reason is that many STL
|
|
// implementations will not work properly as the min and max symbols collide
|
|
// with the STL functions std:min() and std::max(). The STL headers may check
|
|
// for the macro definition of min/max and issue a warning or undefine the
|
|
// macros.
|
|
//
|
|
// Still, Windows defines min() and max() in windef.h as part of the regular
|
|
// Windows system interfaces and many other Windows APIs depend on these
|
|
// macros being available. To prevent the macro expansion of min/max and to
|
|
// make Eigen compatible with the Windows environment all function calls of
|
|
// std::min() and std::max() have to be written with parenthesis around the
|
|
// function name.
|
|
//
|
|
// All STL headers used by Eigen should be included here. Because main.h is
|
|
// included before any Eigen header and because the STL headers are guarded
|
|
// against multiple inclusions, no STL header will see our own min/max macro
|
|
// definitions.
|
|
#include <algorithm>
|
|
#include <limits>
|
|
// Disable ICC's std::complex operator specializations so we can use our own.
|
|
#define _OVERRIDE_COMPLEX_SPECIALIZATION_ 1
|
|
#include <cassert>
|
|
#include <complex>
|
|
#include <deque>
|
|
#include <list>
|
|
#include <queue>
|
|
#if __cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)
|
|
#include <chrono>
|
|
#include <random>
|
|
#ifdef EIGEN_USE_THREADS
|
|
#include <future>
|
|
#endif
|
|
#endif
|
|
|
|
// Same for cuda_fp16.h
|
|
#if defined(__CUDACC__) && !defined(EIGEN_NO_CUDA)
|
|
// Means the compiler is either nvcc or clang with CUDA enabled
|
|
#define EIGEN_CUDACC __CUDACC__
|
|
#endif
|
|
#if defined(EIGEN_CUDACC)
|
|
#include <cuda.h>
|
|
#define EIGEN_CUDA_SDK_VER (CUDA_VERSION * 10)
|
|
#else
|
|
#define EIGEN_CUDA_SDK_VER 0
|
|
#endif
|
|
#if EIGEN_CUDA_SDK_VER >= 70500
|
|
#include <cuda_fp16.h>
|
|
#endif
|
|
|
|
// To test that all calls from Eigen code to std::min() and std::max() are
|
|
// protected by parenthesis against macro expansion, the min()/max() macros
|
|
// are defined here and any not-parenthesized min/max call will cause a
|
|
// compiler error.
|
|
#if !defined(__HIPCC__) && !defined(EIGEN_USE_SYCL)
|
|
//
|
|
// HIP header files include the following files
|
|
// <thread>
|
|
// <regex>
|
|
// <unordered_map>
|
|
// which seem to contain not-parenthesized calls to "max"/"min", triggering the
|
|
// following check and causing the compile to fail
|
|
//
|
|
// Including those header files before the following macro definition for "min"
|
|
// / "max", only partially resolves the issue
|
|
// This is because other HIP header files also define "isnan" / "isinf" /
|
|
// "isfinite" functions, which are needed in other
|
|
// headers.
|
|
//
|
|
// So instead choosing to simply disable this check for HIP
|
|
//
|
|
#define min(A, B) please_protect_your_min_with_parentheses
|
|
#define max(A, B) please_protect_your_max_with_parentheses
|
|
#define isnan(X) please_protect_your_isnan_with_parentheses
|
|
#define isinf(X) please_protect_your_isinf_with_parentheses
|
|
#define isfinite(X) please_protect_your_isfinite_with_parentheses
|
|
#endif
|
|
|
|
// test possible conflicts
|
|
struct real {};
|
|
struct imag {};
|
|
|
|
#ifdef M_PI
|
|
#undef M_PI
|
|
#endif
|
|
#define M_PI please_use_EIGEN_PI_instead_of_M_PI
|
|
|
|
#define FORBIDDEN_IDENTIFIER \
|
|
(this_identifier_is_forbidden_to_avoid_clashes) \
|
|
this_identifier_is_forbidden_to_avoid_clashes
|
|
// B0 is defined in POSIX header termios.h
|
|
#define B0 FORBIDDEN_IDENTIFIER
|
|
// `I` may be defined by complex.h:
|
|
#define I FORBIDDEN_IDENTIFIER
|
|
|
|
// Unit tests calling Eigen's blas library must preserve the default blocking
|
|
// size
|
|
// to avoid troubles.
|
|
#ifndef EIGEN_NO_DEBUG_SMALL_PRODUCT_BLOCKS
|
|
#define EIGEN_DEBUG_SMALL_PRODUCT_BLOCKS
|
|
#endif
|
|
|
|
// shuts down ICC's remark #593: variable "XXX" was set but never used
|
|
#define TEST_SET_BUT_UNUSED_VARIABLE(X) EIGEN_UNUSED_VARIABLE(X)
|
|
|
|
#ifdef TEST_ENABLE_TEMPORARY_TRACKING
|
|
|
|
static long int nb_temporaries;
|
|
static long int nb_temporaries_on_assert = -1;
|
|
|
|
inline void on_temporary_creation(long int size) {
|
|
// here's a great place to set a breakpoint when debugging failures in this
|
|
// test!
|
|
if (size != 0) nb_temporaries++;
|
|
if (nb_temporaries_on_assert > 0)
|
|
assert(nb_temporaries < nb_temporaries_on_assert);
|
|
}
|
|
|
|
#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN \
|
|
{ on_temporary_creation(size); }
|
|
|
|
#define VERIFY_EVALUATION_COUNT(XPR, N) \
|
|
{ \
|
|
nb_temporaries = 0; \
|
|
XPR; \
|
|
if (nb_temporaries != (N)) { \
|
|
std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
|
|
} \
|
|
VERIFY((#XPR) && nb_temporaries == (N)); \
|
|
}
|
|
|
|
#endif
|
|
|
|
#include "split_test_helper.h"
|
|
|
|
#ifdef NDEBUG
|
|
#undef NDEBUG
|
|
#endif
|
|
|
|
// On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not
|
|
// defined.
|
|
#ifndef DEBUG
|
|
#define DEBUG
|
|
#endif
|
|
|
|
// bounds integer values for AltiVec
|
|
#if defined(__ALTIVEC__) || defined(__VSX__)
|
|
#define EIGEN_MAKING_DOCS
|
|
#endif
|
|
|
|
#define DEFAULT_REPEAT 10
|
|
|
|
namespace Eigen {
|
|
static std::vector<std::string> g_test_stack;
|
|
// level == 0 <=> abort if test fail
|
|
// level >= 1 <=> warning message to std::cerr if test fail
|
|
static int g_test_level = 0;
|
|
static int g_repeat = 1;
|
|
static unsigned int g_seed = 0;
|
|
static bool g_has_set_repeat = false, g_has_set_seed = false;
|
|
|
|
class EigenTest {
|
|
public:
|
|
EigenTest() : m_func(0) {}
|
|
EigenTest(const char* a_name, void (*func)(void))
|
|
: m_name(a_name), m_func(func) {
|
|
ms_registered_tests.push_back(this);
|
|
}
|
|
const std::string& name() const { return m_name; }
|
|
void operator()() const { m_func(); }
|
|
|
|
static const std::vector<EigenTest*>& all() { return ms_registered_tests; }
|
|
|
|
protected:
|
|
std::string m_name;
|
|
void (*m_func)(void);
|
|
static std::vector<EigenTest*> ms_registered_tests;
|
|
};
|
|
|
|
std::vector<EigenTest*> EigenTest::ms_registered_tests;
|
|
|
|
// Declare and register a test, e.g.:
|
|
// EIGEN_DECLARE_TEST(mytest) { ... }
|
|
// will create a function:
|
|
// void test_mytest() { ... }
|
|
// that will be automatically called.
|
|
#define EIGEN_DECLARE_TEST(X) \
|
|
void EIGEN_CAT(test_, X)(); \
|
|
static EigenTest EIGEN_CAT(test_handler_, X)(EIGEN_MAKESTRING(X), \
|
|
&EIGEN_CAT(test_, X)); \
|
|
void EIGEN_CAT(test_, X)()
|
|
}
|
|
|
|
#define TRACK std::cerr << __FILE__ << " " << __LINE__ << std::endl
|
|
// #define TRACK while()
|
|
|
|
#define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "")
|
|
|
|
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && \
|
|
!defined(__CUDA_ARCH__) && !defined(__HIP_DEVICE_COMPILE__) && \
|
|
!defined(__SYCL_DEVICE_ONLY__)
|
|
#define EIGEN_EXCEPTIONS
|
|
#endif
|
|
|
|
#ifndef EIGEN_NO_ASSERTION_CHECKING
|
|
|
|
namespace Eigen {
|
|
static const bool should_raise_an_assert = false;
|
|
|
|
// Used to avoid to raise two exceptions at a time in which
|
|
// case the exception is not properly caught.
|
|
// This may happen when a second exceptions is triggered in a destructor.
|
|
static bool no_more_assert = false;
|
|
static bool report_on_cerr_on_assert_failure = true;
|
|
|
|
struct eigen_assert_exception {
|
|
eigen_assert_exception(void) {}
|
|
~eigen_assert_exception() { Eigen::no_more_assert = false; }
|
|
};
|
|
|
|
struct eigen_static_assert_exception {
|
|
eigen_static_assert_exception(void) {}
|
|
~eigen_static_assert_exception() { Eigen::no_more_assert = false; }
|
|
};
|
|
}
|
|
// If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
|
|
// one should have been, then the list of executed assertions is printed out.
|
|
//
|
|
// EIGEN_DEBUG_ASSERTS is not enabled by default as it
|
|
// significantly increases the compilation time
|
|
// and might even introduce side effects that would hide
|
|
// some memory errors.
|
|
#ifdef EIGEN_DEBUG_ASSERTS
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
static bool push_assert = false;
|
|
}
|
|
static std::vector<std::string> eigen_assert_list;
|
|
}
|
|
#define eigen_assert(a) \
|
|
if ((!(a)) && (!no_more_assert)) { \
|
|
if (report_on_cerr_on_assert_failure) \
|
|
std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
|
|
Eigen::no_more_assert = true; \
|
|
EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
|
|
} else if (Eigen::internal::push_assert) { \
|
|
eigen_assert_list.push_back(std::string(EIGEN_MAKESTRING( \
|
|
__FILE__) " (" EIGEN_MAKESTRING(__LINE__) ") : " #a)); \
|
|
}
|
|
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
#define VERIFY_RAISES_ASSERT(a) \
|
|
{ \
|
|
Eigen::no_more_assert = false; \
|
|
Eigen::eigen_assert_list.clear(); \
|
|
Eigen::internal::push_assert = true; \
|
|
Eigen::report_on_cerr_on_assert_failure = false; \
|
|
try { \
|
|
a; \
|
|
std::cerr \
|
|
<< "One of the following asserts should have been triggered:\n"; \
|
|
for (uint ai = 0; ai < eigen_assert_list.size(); ++ai) \
|
|
std::cerr << " " << eigen_assert_list[ai] << "\n"; \
|
|
VERIFY(Eigen::should_raise_an_assert&& #a); \
|
|
} catch (Eigen::eigen_assert_exception) { \
|
|
Eigen::internal::push_assert = false; \
|
|
VERIFY(true); \
|
|
} \
|
|
Eigen::report_on_cerr_on_assert_failure = true; \
|
|
Eigen::internal::push_assert = false; \
|
|
}
|
|
#endif // EIGEN_EXCEPTIONS
|
|
|
|
#elif !defined(__CUDACC__) && !defined(__HIPCC__) && \
|
|
!defined(SYCL_DEVICE_ONLY) // EIGEN_DEBUG_ASSERTS
|
|
// see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
|
|
#define eigen_assert(a) \
|
|
if ((!Eigen::internal::copy_bool(a)) && (!no_more_assert)) { \
|
|
Eigen::no_more_assert = true; \
|
|
if (report_on_cerr_on_assert_failure) \
|
|
eigen_plain_assert(a); \
|
|
else \
|
|
EIGEN_THROW_X(Eigen::eigen_assert_exception()); \
|
|
}
|
|
|
|
#ifdef EIGEN_EXCEPTIONS
|
|
#define VERIFY_RAISES_ASSERT(a) \
|
|
{ \
|
|
Eigen::no_more_assert = false; \
|
|
Eigen::report_on_cerr_on_assert_failure = false; \
|
|
try { \
|
|
a; \
|
|
VERIFY(Eigen::should_raise_an_assert&& #a); \
|
|
} catch (Eigen::eigen_assert_exception&) { \
|
|
VERIFY(true); \
|
|
} \
|
|
Eigen::report_on_cerr_on_assert_failure = true; \
|
|
}
|
|
#endif // EIGEN_EXCEPTIONS
|
|
#endif // EIGEN_DEBUG_ASSERTS
|
|
|
|
#if defined(TEST_CHECK_STATIC_ASSERTIONS) && defined(EIGEN_EXCEPTIONS)
|
|
#define EIGEN_STATIC_ASSERT(a, MSG) \
|
|
if ((!Eigen::internal::copy_bool(a)) && (!no_more_assert)) { \
|
|
Eigen::no_more_assert = true; \
|
|
if (report_on_cerr_on_assert_failure) \
|
|
eigen_plain_assert((a) && #MSG); \
|
|
else \
|
|
EIGEN_THROW_X(Eigen::eigen_static_assert_exception()); \
|
|
}
|
|
#define VERIFY_RAISES_STATIC_ASSERT(a) \
|
|
{ \
|
|
Eigen::no_more_assert = false; \
|
|
Eigen::report_on_cerr_on_assert_failure = false; \
|
|
try { \
|
|
a; \
|
|
VERIFY(Eigen::should_raise_an_assert&& #a); \
|
|
} catch (Eigen::eigen_static_assert_exception&) { \
|
|
VERIFY(true); \
|
|
} \
|
|
Eigen::report_on_cerr_on_assert_failure = true; \
|
|
}
|
|
#endif // TEST_CHECK_STATIC_ASSERTIONS
|
|
|
|
#ifndef VERIFY_RAISES_ASSERT
|
|
#define VERIFY_RAISES_ASSERT(a) \
|
|
std::cout << "Can't VERIFY_RAISES_ASSERT( " #a \
|
|
" ) with exceptions disabled\n";
|
|
#endif
|
|
#ifndef VERIFY_RAISES_STATIC_ASSERT
|
|
#define VERIFY_RAISES_STATIC_ASSERT(a) \
|
|
std::cout << "Can't VERIFY_RAISES_STATIC_ASSERT( " #a \
|
|
" ) with exceptions disabled\n";
|
|
#endif
|
|
|
|
#if !defined(__CUDACC__) && !defined(__HIPCC__) && !defined(SYCL_DEVICE_ONLY)
|
|
#define EIGEN_USE_CUSTOM_ASSERT
|
|
#endif
|
|
|
|
#else // EIGEN_NO_ASSERTION_CHECKING
|
|
|
|
#define VERIFY_RAISES_ASSERT(a) \
|
|
{}
|
|
#define VERIFY_RAISES_STATIC_ASSERT(a) \
|
|
{}
|
|
|
|
#endif // EIGEN_NO_ASSERTION_CHECKING
|
|
|
|
#define EIGEN_INTERNAL_DEBUGGING
|
|
#include <Eigen/QR> // required for createRandomPIMatrixOfRank
|
|
|
|
inline void verify_impl(bool condition, const char* testname, const char* file,
|
|
int line, const char* condition_as_string) {
|
|
if (!condition) {
|
|
if (Eigen::g_test_level > 0) std::cerr << "WARNING: ";
|
|
std::cerr << "Test " << testname << " failed in " << file << " (" << line
|
|
<< ")" << std::endl
|
|
<< " " << condition_as_string << std::endl;
|
|
std::cerr << "Stack:\n";
|
|
const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size());
|
|
for (int i = test_stack_size - 1; i >= 0; --i)
|
|
std::cerr << " - " << Eigen::g_test_stack[i] << "\n";
|
|
std::cerr << "\n";
|
|
if (Eigen::g_test_level == 0) abort();
|
|
}
|
|
}
|
|
|
|
#define VERIFY(a) \
|
|
::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, \
|
|
EIGEN_MAKESTRING(a))
|
|
|
|
#define VERIFY_GE(a, b) \
|
|
::verify_impl(a >= b, g_test_stack.back().c_str(), __FILE__, __LINE__, \
|
|
EIGEN_MAKESTRING(a >= b))
|
|
#define VERIFY_LE(a, b) \
|
|
::verify_impl(a <= b, g_test_stack.back().c_str(), __FILE__, __LINE__, \
|
|
EIGEN_MAKESTRING(a <= b))
|
|
|
|
#define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b, true))
|
|
#define VERIFY_IS_NOT_EQUAL(a, b) VERIFY(test_is_equal(a, b, false))
|
|
#define VERIFY_IS_APPROX(a, b) VERIFY(verifyIsApprox(a, b))
|
|
#define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
|
|
#define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
|
|
#define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) \
|
|
VERIFY(!test_isMuchSmallerThan(a, b))
|
|
#define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) \
|
|
VERIFY(test_isApproxOrLessThan(a, b))
|
|
#define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) \
|
|
VERIFY(!test_isApproxOrLessThan(a, b))
|
|
|
|
#define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
|
|
|
|
#define STATIC_CHECK(COND) \
|
|
EIGEN_STATIC_ASSERT((COND), EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT)
|
|
|
|
#define CALL_SUBTEST(FUNC) \
|
|
do { \
|
|
g_test_stack.push_back(EIGEN_MAKESTRING(FUNC)); \
|
|
FUNC; \
|
|
g_test_stack.pop_back(); \
|
|
} while (0)
|
|
|
|
namespace Eigen {
|
|
|
|
template <typename T1, typename T2>
|
|
typename internal::enable_if<internal::is_same<T1, T2>::value, bool>::type
|
|
is_same_type(const T1&, const T2&) {
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
inline typename NumTraits<T>::Real test_precision() {
|
|
return NumTraits<T>::dummy_precision();
|
|
}
|
|
template <>
|
|
inline float test_precision<float>() {
|
|
return 1e-3f;
|
|
}
|
|
template <>
|
|
inline double test_precision<double>() {
|
|
return 1e-6;
|
|
}
|
|
template <>
|
|
inline long double test_precision<long double>() {
|
|
return 1e-6l;
|
|
}
|
|
template <>
|
|
inline float test_precision<std::complex<float> >() {
|
|
return test_precision<float>();
|
|
}
|
|
template <>
|
|
inline double test_precision<std::complex<double> >() {
|
|
return test_precision<double>();
|
|
}
|
|
template <>
|
|
inline long double test_precision<std::complex<long double> >() {
|
|
return test_precision<long double>();
|
|
}
|
|
|
|
#define EIGEN_TEST_SCALAR_TEST_OVERLOAD(TYPE) \
|
|
inline bool test_isApprox(TYPE a, TYPE b) { \
|
|
return internal::isApprox(a, b, test_precision<TYPE>()); \
|
|
} \
|
|
inline bool test_isMuchSmallerThan(TYPE a, TYPE b) { \
|
|
return internal::isMuchSmallerThan(a, b, test_precision<TYPE>()); \
|
|
} \
|
|
inline bool test_isApproxOrLessThan(TYPE a, TYPE b) { \
|
|
return internal::isApproxOrLessThan(a, b, test_precision<TYPE>()); \
|
|
}
|
|
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(short)
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned short)
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(int)
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned int)
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(long)
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long)
|
|
#if EIGEN_HAS_CXX11
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(long long)
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(unsigned long long)
|
|
#endif
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(float)
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(double)
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(half)
|
|
EIGEN_TEST_SCALAR_TEST_OVERLOAD(bfloat16)
|
|
|
|
#undef EIGEN_TEST_SCALAR_TEST_OVERLOAD
|
|
|
|
#ifndef EIGEN_TEST_NO_COMPLEX
|
|
inline bool test_isApprox(const std::complex<float>& a,
|
|
const std::complex<float>& b) {
|
|
return internal::isApprox(a, b, test_precision<std::complex<float> >());
|
|
}
|
|
inline bool test_isMuchSmallerThan(const std::complex<float>& a,
|
|
const std::complex<float>& b) {
|
|
return internal::isMuchSmallerThan(a, b,
|
|
test_precision<std::complex<float> >());
|
|
}
|
|
|
|
inline bool test_isApprox(const std::complex<double>& a,
|
|
const std::complex<double>& b) {
|
|
return internal::isApprox(a, b, test_precision<std::complex<double> >());
|
|
}
|
|
inline bool test_isMuchSmallerThan(const std::complex<double>& a,
|
|
const std::complex<double>& b) {
|
|
return internal::isMuchSmallerThan(a, b,
|
|
test_precision<std::complex<double> >());
|
|
}
|
|
|
|
#ifndef EIGEN_TEST_NO_LONGDOUBLE
|
|
inline bool test_isApprox(const std::complex<long double>& a,
|
|
const std::complex<long double>& b) {
|
|
return internal::isApprox(a, b, test_precision<std::complex<long double> >());
|
|
}
|
|
inline bool test_isMuchSmallerThan(const std::complex<long double>& a,
|
|
const std::complex<long double>& b) {
|
|
return internal::isMuchSmallerThan(
|
|
a, b, test_precision<std::complex<long double> >());
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef EIGEN_TEST_NO_LONGDOUBLE
|
|
inline bool test_isApprox(const long double& a, const long double& b) {
|
|
bool ret = internal::isApprox(a, b, test_precision<long double>());
|
|
if (!ret)
|
|
std::cerr << std::endl
|
|
<< " actual = " << a << std::endl
|
|
<< " expected = " << b << std::endl
|
|
<< std::endl;
|
|
return ret;
|
|
}
|
|
|
|
inline bool test_isMuchSmallerThan(const long double& a, const long double& b) {
|
|
return internal::isMuchSmallerThan(a, b, test_precision<long double>());
|
|
}
|
|
inline bool test_isApproxOrLessThan(const long double& a,
|
|
const long double& b) {
|
|
return internal::isApproxOrLessThan(a, b, test_precision<long double>());
|
|
}
|
|
#endif // EIGEN_TEST_NO_LONGDOUBLE
|
|
|
|
// test_relative_error returns the relative difference between a and b as a real
|
|
// scalar as used in isApprox.
|
|
template <typename T1, typename T2>
|
|
typename NumTraits<typename T1::RealScalar>::NonInteger test_relative_error(
|
|
const EigenBase<T1>& a, const EigenBase<T2>& b) {
|
|
using std::sqrt;
|
|
typedef typename NumTraits<typename T1::RealScalar>::NonInteger RealScalar;
|
|
typename internal::nested_eval<T1, 2>::type ea(a.derived());
|
|
typename internal::nested_eval<T2, 2>::type eb(b.derived());
|
|
return sqrt(
|
|
RealScalar((ea - eb).cwiseAbs2().sum()) /
|
|
RealScalar((std::min)(eb.cwiseAbs2().sum(), ea.cwiseAbs2().sum())));
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
typename T1::RealScalar test_relative_error(
|
|
const T1& a, const T2& b, const typename T1::Coefficients* = 0) {
|
|
return test_relative_error(a.coeffs(), b.coeffs());
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
typename T1::Scalar test_relative_error(const T1& a, const T2& b,
|
|
const typename T1::MatrixType* = 0) {
|
|
return test_relative_error(a.matrix(), b.matrix());
|
|
}
|
|
|
|
template <typename S, int D>
|
|
S test_relative_error(const Translation<S, D>& a, const Translation<S, D>& b) {
|
|
return test_relative_error(a.vector(), b.vector());
|
|
}
|
|
|
|
template <typename S, int D, int O>
|
|
S test_relative_error(const ParametrizedLine<S, D, O>& a,
|
|
const ParametrizedLine<S, D, O>& b) {
|
|
return (std::max)(test_relative_error(a.origin(), b.origin()),
|
|
test_relative_error(a.origin(), b.origin()));
|
|
}
|
|
|
|
template <typename S, int D>
|
|
S test_relative_error(const AlignedBox<S, D>& a, const AlignedBox<S, D>& b) {
|
|
return (std::max)(test_relative_error((a.min)(), (b.min)()),
|
|
test_relative_error((a.max)(), (b.max)()));
|
|
}
|
|
|
|
template <typename Derived>
|
|
class SparseMatrixBase;
|
|
template <typename T1, typename T2>
|
|
typename T1::RealScalar test_relative_error(const MatrixBase<T1>& a,
|
|
const SparseMatrixBase<T2>& b) {
|
|
return test_relative_error(a, b.toDense());
|
|
}
|
|
|
|
template <typename Derived>
|
|
class SparseMatrixBase;
|
|
template <typename T1, typename T2>
|
|
typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1>& a,
|
|
const MatrixBase<T2>& b) {
|
|
return test_relative_error(a.toDense(), b);
|
|
}
|
|
|
|
template <typename Derived>
|
|
class SparseMatrixBase;
|
|
template <typename T1, typename T2>
|
|
typename T1::RealScalar test_relative_error(const SparseMatrixBase<T1>& a,
|
|
const SparseMatrixBase<T2>& b) {
|
|
return test_relative_error(a.toDense(), b.toDense());
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
typename NumTraits<typename NumTraits<T1>::Real>::NonInteger
|
|
test_relative_error(
|
|
const T1& a, const T2& b,
|
|
typename internal::enable_if<
|
|
internal::is_arithmetic<typename NumTraits<T1>::Real>::value,
|
|
T1>::type* = 0) {
|
|
typedef
|
|
typename NumTraits<typename NumTraits<T1>::Real>::NonInteger RealScalar;
|
|
return numext::sqrt(
|
|
RealScalar(numext::abs2(a - b)) /
|
|
(numext::mini)(RealScalar(numext::abs2(a)), RealScalar(numext::abs2(b))));
|
|
}
|
|
|
|
template <typename T>
|
|
T test_relative_error(const Rotation2D<T>& a, const Rotation2D<T>& b) {
|
|
return test_relative_error(a.angle(), b.angle());
|
|
}
|
|
|
|
template <typename T>
|
|
T test_relative_error(const AngleAxis<T>& a, const AngleAxis<T>& b) {
|
|
return (std::max)(test_relative_error(a.angle(), b.angle()),
|
|
test_relative_error(a.axis(), b.axis()));
|
|
}
|
|
|
|
template <typename Type1, typename Type2>
|
|
inline bool test_isApprox(
|
|
const Type1& a, const Type2& b,
|
|
typename Type1::Scalar* = 0) // Enabled for Eigen's type only
|
|
{
|
|
return a.isApprox(b, test_precision<typename Type1::Scalar>());
|
|
}
|
|
|
|
// get_test_precision is a small wrapper to test_precision allowing to return
|
|
// the scalar precision for either scalars or expressions
|
|
template <typename T>
|
|
typename NumTraits<typename T::Scalar>::Real get_test_precision(
|
|
const T&, const typename T::Scalar* = 0) {
|
|
return test_precision<typename NumTraits<typename T::Scalar>::Real>();
|
|
}
|
|
|
|
template <typename T>
|
|
typename NumTraits<T>::Real get_test_precision(
|
|
const T&,
|
|
typename internal::enable_if<
|
|
internal::is_arithmetic<typename NumTraits<T>::Real>::value, T>::type* =
|
|
0) {
|
|
return test_precision<typename NumTraits<T>::Real>();
|
|
}
|
|
|
|
// verifyIsApprox is a wrapper to test_isApprox that outputs the relative
|
|
// difference magnitude if the test fails.
|
|
template <typename Type1, typename Type2>
|
|
inline bool verifyIsApprox(const Type1& a, const Type2& b) {
|
|
bool ret = test_isApprox(a, b);
|
|
if (!ret) {
|
|
std::cerr << "Difference too large wrt tolerance " << get_test_precision(a)
|
|
<< ", relative error is: " << test_relative_error(a, b)
|
|
<< std::endl;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// The idea behind this function is to compare the two scalars a and b where
|
|
// the scalar ref is a hint about the expected order of magnitude of a and b.
|
|
// WARNING: the scalar a and b must be positive
|
|
// Therefore, if for some reason a and b are very small compared to ref,
|
|
// we won't issue a false negative.
|
|
// This test could be: abs(a-b) <= eps * ref
|
|
// However, it seems that simply comparing a+ref and b+ref is more sensitive to
|
|
// true error.
|
|
template <typename Scalar, typename ScalarRef>
|
|
inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b,
|
|
const ScalarRef& ref) {
|
|
return test_isApprox(a + ref, b + ref);
|
|
}
|
|
|
|
template <typename Derived1, typename Derived2>
|
|
inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
|
|
const MatrixBase<Derived2>& m2) {
|
|
return m1.isMuchSmallerThan(
|
|
m2, test_precision<typename internal::traits<Derived1>::Scalar>());
|
|
}
|
|
|
|
template <typename Derived>
|
|
inline bool test_isMuchSmallerThan(
|
|
const MatrixBase<Derived>& m,
|
|
const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real&
|
|
s) {
|
|
return m.isMuchSmallerThan(
|
|
s, test_precision<typename internal::traits<Derived>::Scalar>());
|
|
}
|
|
|
|
template <typename Derived>
|
|
inline bool test_isUnitary(const MatrixBase<Derived>& m) {
|
|
return m.isUnitary(
|
|
test_precision<typename internal::traits<Derived>::Scalar>());
|
|
}
|
|
|
|
// Forward declaration to avoid ICC warning
|
|
template <typename T, typename U>
|
|
bool test_is_equal(const T& actual, const U& expected,
|
|
bool expect_equal = true);
|
|
|
|
template <typename T, typename U>
|
|
bool test_is_equal(const T& actual, const U& expected, bool expect_equal) {
|
|
if ((actual == expected) == expect_equal) return true;
|
|
// false:
|
|
std::cerr << "\n actual = " << actual << "\n expected "
|
|
<< (expect_equal ? "= " : "!=") << expected << "\n\n";
|
|
return false;
|
|
}
|
|
|
|
/** Creates a random Partial Isometry matrix of given rank.
|
|
*
|
|
* A partial isometry is a matrix all of whose singular values are either 0 or
|
|
* 1.
|
|
* This is very useful to test rank-revealing algorithms.
|
|
*/
|
|
// Forward declaration to avoid ICC warning
|
|
template <typename MatrixType>
|
|
void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols,
|
|
MatrixType& m);
|
|
template <typename MatrixType>
|
|
void createRandomPIMatrixOfRank(Index desired_rank, Index rows, Index cols,
|
|
MatrixType& m) {
|
|
typedef typename internal::traits<MatrixType>::Scalar Scalar;
|
|
enum {
|
|
Rows = MatrixType::RowsAtCompileTime,
|
|
Cols = MatrixType::ColsAtCompileTime
|
|
};
|
|
|
|
typedef Matrix<Scalar, Dynamic, 1> VectorType;
|
|
typedef Matrix<Scalar, Rows, Rows> MatrixAType;
|
|
typedef Matrix<Scalar, Cols, Cols> MatrixBType;
|
|
|
|
if (desired_rank == 0) {
|
|
m.setZero(rows, cols);
|
|
return;
|
|
}
|
|
|
|
if (desired_rank == 1) {
|
|
// here we normalize the vectors to get a partial isometry
|
|
m = VectorType::Random(rows).normalized() *
|
|
VectorType::Random(cols).normalized().transpose();
|
|
return;
|
|
}
|
|
|
|
MatrixAType a = MatrixAType::Random(rows, rows);
|
|
MatrixType d = MatrixType::Identity(rows, cols);
|
|
MatrixBType b = MatrixBType::Random(cols, cols);
|
|
|
|
// set the diagonal such that only desired_rank non-zero entries reamain
|
|
const Index diag_size = (std::min)(d.rows(), d.cols());
|
|
if (diag_size != desired_rank)
|
|
d.diagonal().segment(desired_rank, diag_size - desired_rank) =
|
|
VectorType::Zero(diag_size - desired_rank);
|
|
|
|
HouseholderQR<MatrixAType> qra(a);
|
|
HouseholderQR<MatrixBType> qrb(b);
|
|
m = qra.householderQ() * d * qrb.householderQ();
|
|
}
|
|
|
|
// Forward declaration to avoid ICC warning
|
|
template <typename PermutationVectorType>
|
|
void randomPermutationVector(PermutationVectorType& v, Index size);
|
|
template <typename PermutationVectorType>
|
|
void randomPermutationVector(PermutationVectorType& v, Index size) {
|
|
typedef typename PermutationVectorType::Scalar Scalar;
|
|
v.resize(size);
|
|
for (Index i = 0; i < size; ++i) v(i) = Scalar(i);
|
|
if (size == 1) return;
|
|
for (Index n = 0; n < 3 * size; ++n) {
|
|
Index i = internal::random<Index>(0, size - 1);
|
|
Index j;
|
|
do
|
|
j = internal::random<Index>(0, size - 1);
|
|
while (j == i);
|
|
std::swap(v(i), v(j));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
bool isNotNaN(const T& x) {
|
|
return x == x;
|
|
}
|
|
|
|
template <typename T>
|
|
bool isPlusInf(const T& x) {
|
|
return x > NumTraits<T>::highest();
|
|
}
|
|
|
|
template <typename T>
|
|
bool isMinusInf(const T& x) {
|
|
return x < NumTraits<T>::lowest();
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
template <typename T>
|
|
struct GetDifferentType;
|
|
|
|
template <>
|
|
struct GetDifferentType<float> {
|
|
typedef double type;
|
|
};
|
|
template <>
|
|
struct GetDifferentType<double> {
|
|
typedef float type;
|
|
};
|
|
template <typename T>
|
|
struct GetDifferentType<std::complex<T> > {
|
|
typedef std::complex<typename GetDifferentType<T>::type> type;
|
|
};
|
|
|
|
// Forward declaration to avoid ICC warning
|
|
template <typename T>
|
|
std::string type_name();
|
|
template <typename T>
|
|
std::string type_name() {
|
|
return "other";
|
|
}
|
|
template <>
|
|
std::string type_name<float>() {
|
|
return "float";
|
|
}
|
|
template <>
|
|
std::string type_name<double>() {
|
|
return "double";
|
|
}
|
|
template <>
|
|
std::string type_name<long double>() {
|
|
return "long double";
|
|
}
|
|
template <>
|
|
std::string type_name<int>() {
|
|
return "int";
|
|
}
|
|
template <>
|
|
std::string type_name<std::complex<float> >() {
|
|
return "complex<float>";
|
|
}
|
|
template <>
|
|
std::string type_name<std::complex<double> >() {
|
|
return "complex<double>";
|
|
}
|
|
template <>
|
|
std::string type_name<std::complex<long double> >() {
|
|
return "complex<long double>";
|
|
}
|
|
template <>
|
|
std::string type_name<std::complex<int> >() {
|
|
return "complex<int>";
|
|
}
|
|
|
|
using namespace Eigen;
|
|
|
|
inline void set_repeat_from_string(const char* str) {
|
|
errno = 0;
|
|
g_repeat = int(strtoul(str, 0, 10));
|
|
if (errno || g_repeat <= 0) {
|
|
std::cout << "Invalid repeat value " << str << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
g_has_set_repeat = true;
|
|
}
|
|
|
|
inline void set_seed_from_string(const char* str) {
|
|
errno = 0;
|
|
g_seed = int(strtoul(str, 0, 10));
|
|
if (errno || g_seed == 0) {
|
|
std::cout << "Invalid seed value " << str << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
g_has_set_seed = true;
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
g_has_set_repeat = false;
|
|
g_has_set_seed = false;
|
|
bool need_help = false;
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
if (argv[i][0] == 'r') {
|
|
if (g_has_set_repeat) {
|
|
std::cout << "Argument " << argv[i]
|
|
<< " conflicting with a former argument" << std::endl;
|
|
return 1;
|
|
}
|
|
set_repeat_from_string(argv[i] + 1);
|
|
} else if (argv[i][0] == 's') {
|
|
if (g_has_set_seed) {
|
|
std::cout << "Argument " << argv[i]
|
|
<< " conflicting with a former argument" << std::endl;
|
|
return 1;
|
|
}
|
|
set_seed_from_string(argv[i] + 1);
|
|
} else {
|
|
need_help = true;
|
|
}
|
|
}
|
|
|
|
if (need_help) {
|
|
std::cout << "This test application takes the following optional arguments:"
|
|
<< std::endl;
|
|
std::cout << " rN Repeat each test N times (default: "
|
|
<< DEFAULT_REPEAT << ")" << std::endl;
|
|
std::cout << " sN Use N as seed for random numbers (default: based on "
|
|
"current time)"
|
|
<< std::endl;
|
|
std::cout << std::endl;
|
|
std::cout
|
|
<< "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED"
|
|
<< std::endl;
|
|
std::cout << "will be used as default values for these parameters."
|
|
<< std::endl;
|
|
return 1;
|
|
}
|
|
|
|
char* env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
|
|
if (!g_has_set_repeat && env_EIGEN_REPEAT)
|
|
set_repeat_from_string(env_EIGEN_REPEAT);
|
|
char* env_EIGEN_SEED = getenv("EIGEN_SEED");
|
|
if (!g_has_set_seed && env_EIGEN_SEED) set_seed_from_string(env_EIGEN_SEED);
|
|
|
|
if (!g_has_set_seed) g_seed = (unsigned int)time(NULL);
|
|
if (!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
|
|
|
|
std::cout << "Initializing random number generator with seed " << g_seed
|
|
<< std::endl;
|
|
std::stringstream ss;
|
|
ss << "Seed: " << g_seed;
|
|
g_test_stack.push_back(ss.str());
|
|
srand(g_seed);
|
|
std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
|
|
|
|
VERIFY(EigenTest::all().size() > 0);
|
|
|
|
for (std::size_t i = 0; i < EigenTest::all().size(); ++i) {
|
|
const EigenTest& current_test = *EigenTest::all()[i];
|
|
Eigen::g_test_stack.push_back(current_test.name());
|
|
current_test();
|
|
Eigen::g_test_stack.pop_back();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// These warning are disabled here such that they are still ON when parsing
|
|
// Eigen's header files.
|
|
#if defined __INTEL_COMPILER
|
|
// remark #383: value copied to temporary, reference to temporary used
|
|
// -> this warning is raised even for legal usage as:
|
|
// g_test_stack.push_back("foo"); where g_test_stack is a
|
|
// std::vector<std::string>
|
|
// remark #1418: external function definition with no prior declaration
|
|
// -> this warning is raised for all our test functions. Declaring them static
|
|
// would fix the issue.
|
|
// warning #279: controlling expression is constant
|
|
// remark #1572: floating-point equality and inequality comparisons are
|
|
// unreliable
|
|
#pragma warning disable 279 383 1418 1572
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
// 4503 - decorated name length exceeded, name was truncated
|
|
#pragma warning(disable : 4503)
|
|
#endif
|