mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
118 lines
3.6 KiB
C++
118 lines
3.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include <Eigen/Geometry>
|
|
#include <Eigen/LU>
|
|
#include <Eigen/SVD>
|
|
#include "main.h"
|
|
|
|
template <typename Scalar>
|
|
void verify_euler(const Matrix<Scalar, 3, 1>& ea, int i, int j, int k) {
|
|
typedef Matrix<Scalar, 3, 3> Matrix3;
|
|
typedef Matrix<Scalar, 3, 1> Vector3;
|
|
typedef AngleAxis<Scalar> AngleAxisx;
|
|
using std::abs;
|
|
Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) *
|
|
AngleAxisx(ea[1], Vector3::Unit(j)) *
|
|
AngleAxisx(ea[2], Vector3::Unit(k)));
|
|
Vector3 eabis = m.eulerAngles(i, j, k);
|
|
Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) *
|
|
AngleAxisx(eabis[1], Vector3::Unit(j)) *
|
|
AngleAxisx(eabis[2], Vector3::Unit(k)));
|
|
VERIFY_IS_APPROX(m, mbis);
|
|
/* If I==K, and ea[1]==0, then there no unique solution. */
|
|
/* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
|
|
if ((i != k || ea[1] != 0) &&
|
|
(i == k ||
|
|
!internal::isApprox(abs(ea[1]), Scalar(EIGEN_PI / 2),
|
|
test_precision<Scalar>())))
|
|
VERIFY((ea - eabis).norm() <= test_precision<Scalar>());
|
|
|
|
// approx_or_less_than does not work for 0
|
|
VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
|
|
VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
|
|
VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
|
|
VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
|
|
VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
|
|
VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
|
|
}
|
|
|
|
template <typename Scalar>
|
|
void check_all_var(const Matrix<Scalar, 3, 1>& ea) {
|
|
verify_euler(ea, 0, 1, 2);
|
|
verify_euler(ea, 0, 1, 0);
|
|
verify_euler(ea, 0, 2, 1);
|
|
verify_euler(ea, 0, 2, 0);
|
|
|
|
verify_euler(ea, 1, 2, 0);
|
|
verify_euler(ea, 1, 2, 1);
|
|
verify_euler(ea, 1, 0, 2);
|
|
verify_euler(ea, 1, 0, 1);
|
|
|
|
verify_euler(ea, 2, 0, 1);
|
|
verify_euler(ea, 2, 0, 2);
|
|
verify_euler(ea, 2, 1, 0);
|
|
verify_euler(ea, 2, 1, 2);
|
|
}
|
|
|
|
template <typename Scalar>
|
|
void eulerangles() {
|
|
typedef Matrix<Scalar, 3, 3> Matrix3;
|
|
typedef Matrix<Scalar, 3, 1> Vector3;
|
|
typedef Array<Scalar, 3, 1> Array3;
|
|
typedef Quaternion<Scalar> Quaternionx;
|
|
typedef AngleAxis<Scalar> AngleAxisx;
|
|
|
|
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
|
|
Quaternionx q1;
|
|
q1 = AngleAxisx(a, Vector3::Random().normalized());
|
|
Matrix3 m;
|
|
m = q1;
|
|
|
|
Vector3 ea = m.eulerAngles(0, 1, 2);
|
|
check_all_var(ea);
|
|
ea = m.eulerAngles(0, 1, 0);
|
|
check_all_var(ea);
|
|
|
|
// Check with purely random Quaternion:
|
|
q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
|
|
m = q1;
|
|
ea = m.eulerAngles(0, 1, 2);
|
|
check_all_var(ea);
|
|
ea = m.eulerAngles(0, 1, 0);
|
|
check_all_var(ea);
|
|
|
|
// Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
|
|
ea = (Array3::Random() + Array3(1, 0, 0)) * Scalar(EIGEN_PI) *
|
|
Array3(0.5, 1, 1);
|
|
check_all_var(ea);
|
|
|
|
ea[2] = ea[0] = internal::random<Scalar>(0, Scalar(EIGEN_PI));
|
|
check_all_var(ea);
|
|
|
|
ea[0] = ea[1] = internal::random<Scalar>(0, Scalar(EIGEN_PI));
|
|
check_all_var(ea);
|
|
|
|
ea[1] = 0;
|
|
check_all_var(ea);
|
|
|
|
ea.head(2).setZero();
|
|
check_all_var(ea);
|
|
|
|
ea.setZero();
|
|
check_all_var(ea);
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(geo_eulerangles) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(eulerangles<float>());
|
|
CALL_SUBTEST_2(eulerangles<double>());
|
|
}
|
|
}
|