Files
FastDeploy/fastdeploy/vision/sr/ppsr/ppmsvsr.cc
ChaoII c7ec14de95 [Model] add vsr serials models (#518)
* [Model] add vsr serials models

Signed-off-by: ChaoII <849453582@qq.com>

* [Model] add vsr serials models

Signed-off-by: ChaoII <849453582@qq.com>

* fix build problem

Signed-off-by: ChaoII <849453582@qq.com>

* fix code style

Signed-off-by: ChaoII <849453582@qq.com>

* modify according to review suggestions

Signed-off-by: ChaoII <849453582@qq.com>

* modify vsr trt example

Signed-off-by: ChaoII <849453582@qq.com>

* update sr directory

* fix BindPPSR

* add doxygen comment

* add sr unit test

* update model file url

Signed-off-by: ChaoII <849453582@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-11-21 10:58:28 +08:00

128 lines
4.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/sr/ppsr/ppmsvsr.h"
namespace fastdeploy {
namespace vision {
namespace sr {
PPMSVSR::PPMSVSR(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format){
// unsupported ORT backend
valid_cpu_backends = {Backend::PDINFER};
valid_gpu_backends = {Backend::PDINFER};
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool PPMSVSR::Initialize(){
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
mean_ = {0., 0., 0.};
scale_ = {1., 1., 1.};
return true;
}
bool PPMSVSR::Preprocess(Mat* mat, std::vector<float>& output) {
BGR2RGB::Run(mat);
Normalize::Run(mat, mean_, scale_, true);
HWC2CHW::Run(mat);
// Csat float
float* ptr = static_cast<float *>(mat->Data());
size_t size = mat->Width() * mat->Height() * mat->Channels();
output = std::vector<float>(ptr, ptr + size);
return true;
}
bool PPMSVSR::Predict(std::vector<cv::Mat>& imgs, std::vector<cv::Mat>& results) {
// Theoretically, the more frame nums there are, the better the result will be,
// but it will lead to a significant increase in memory
int frame_num = imgs.size();
int rows = imgs[0].rows;
int cols = imgs[0].cols;
int channels = imgs[0].channels();
std::vector<FDTensor> input_tensors;
input_tensors.resize(1);
std::vector<float> all_data_temp;
for (int i = 0; i < frame_num; i++) {
Mat mat(imgs[i]);
std::vector<float> data_temp;
Preprocess(&mat, data_temp);
all_data_temp.insert(all_data_temp.end(), data_temp.begin(), data_temp.end());
}
// share memory in order to avoid memory copy, data type must be float32
input_tensors[0].SetExternalData({1 ,frame_num , channels, rows, cols}, FDDataType::FP32,
all_data_temp.data());
input_tensors[0].shape = {1, frame_num, channels, rows, cols};
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors, results)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
bool PPMSVSR::Postprocess(std::vector<FDTensor>& infer_results, std::vector<cv::Mat>& results){
// group to image
// output_shape is [b, n, c, h, w] n = frame_nums b=1(default)
// b and n is dependence export model shape
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
auto output_shape = infer_results[0].shape;
// PP-MSVSR
int h_ = output_shape[3];
int w_ = output_shape[4];
int c_ = output_shape[2];
int frame_num = output_shape[1];
float *out_data = static_cast<float *>(infer_results[0].Data());
cv::Mat temp = cv::Mat::zeros(h_, w_, CV_32FC3); // RGB image
int pix_num = h_ * w_;
int frame_pix_num = pix_num * c_;
for (int frame = 0; frame < frame_num; frame++) {
int index = 0;
for (int h = 0; h < h_; ++h) {
for (int w = 0; w < w_; ++w) {
temp.at<cv::Vec3f>(h, w) = {out_data[2 * pix_num + index + frame_pix_num * frame],
out_data[pix_num + index + frame_pix_num * frame],
out_data[index + frame_pix_num * frame]};
index += 1;
}
}
// tmp data type is float[0-1.0],convert to uint type
cv::Mat res = cv::Mat::zeros(temp.size(), CV_8UC3);
temp.convertTo(res, CV_8UC3, 255);
results.push_back(res);
}
return true;
}
} // namespace sr
} // namespace vision
} // namespace fastdeploy