mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-30 03:22:05 +08:00
* [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * [Model] add vsr serials models Signed-off-by: ChaoII <849453582@qq.com> * fix build problem Signed-off-by: ChaoII <849453582@qq.com> * fix code style Signed-off-by: ChaoII <849453582@qq.com> * modify according to review suggestions Signed-off-by: ChaoII <849453582@qq.com> * modify vsr trt example Signed-off-by: ChaoII <849453582@qq.com> * update sr directory * fix BindPPSR * add doxygen comment * add sr unit test * update model file url Signed-off-by: ChaoII <849453582@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
128 lines
4.4 KiB
C++
128 lines
4.4 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/sr/ppsr/ppmsvsr.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace sr {
|
|
|
|
PPMSVSR::PPMSVSR(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format){
|
|
// unsupported ORT backend
|
|
valid_cpu_backends = {Backend::PDINFER};
|
|
valid_gpu_backends = {Backend::PDINFER};
|
|
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool PPMSVSR::Initialize(){
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
mean_ = {0., 0., 0.};
|
|
scale_ = {1., 1., 1.};
|
|
return true;
|
|
}
|
|
|
|
bool PPMSVSR::Preprocess(Mat* mat, std::vector<float>& output) {
|
|
|
|
BGR2RGB::Run(mat);
|
|
Normalize::Run(mat, mean_, scale_, true);
|
|
HWC2CHW::Run(mat);
|
|
// Csat float
|
|
float* ptr = static_cast<float *>(mat->Data());
|
|
size_t size = mat->Width() * mat->Height() * mat->Channels();
|
|
output = std::vector<float>(ptr, ptr + size);
|
|
return true;
|
|
}
|
|
|
|
bool PPMSVSR::Predict(std::vector<cv::Mat>& imgs, std::vector<cv::Mat>& results) {
|
|
|
|
// Theoretically, the more frame nums there are, the better the result will be,
|
|
// but it will lead to a significant increase in memory
|
|
int frame_num = imgs.size();
|
|
int rows = imgs[0].rows;
|
|
int cols = imgs[0].cols;
|
|
int channels = imgs[0].channels();
|
|
std::vector<FDTensor> input_tensors;
|
|
input_tensors.resize(1);
|
|
std::vector<float> all_data_temp;
|
|
for (int i = 0; i < frame_num; i++) {
|
|
Mat mat(imgs[i]);
|
|
std::vector<float> data_temp;
|
|
Preprocess(&mat, data_temp);
|
|
all_data_temp.insert(all_data_temp.end(), data_temp.begin(), data_temp.end());
|
|
}
|
|
// share memory in order to avoid memory copy, data type must be float32
|
|
input_tensors[0].SetExternalData({1 ,frame_num , channels, rows, cols}, FDDataType::FP32,
|
|
all_data_temp.data());
|
|
input_tensors[0].shape = {1, frame_num, channels, rows, cols};
|
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
|
std::vector<FDTensor> output_tensors;
|
|
if (!Infer(input_tensors, &output_tensors)) {
|
|
FDERROR << "Failed to inference." << std::endl;
|
|
return false;
|
|
}
|
|
if (!Postprocess(output_tensors, results)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PPMSVSR::Postprocess(std::vector<FDTensor>& infer_results, std::vector<cv::Mat>& results){
|
|
// group to image
|
|
// output_shape is [b, n, c, h, w] n = frame_nums b=1(default)
|
|
// b and n is dependence export model shape
|
|
// see https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md
|
|
auto output_shape = infer_results[0].shape;
|
|
// PP-MSVSR
|
|
int h_ = output_shape[3];
|
|
int w_ = output_shape[4];
|
|
int c_ = output_shape[2];
|
|
int frame_num = output_shape[1];
|
|
|
|
float *out_data = static_cast<float *>(infer_results[0].Data());
|
|
cv::Mat temp = cv::Mat::zeros(h_, w_, CV_32FC3); // RGB image
|
|
int pix_num = h_ * w_;
|
|
int frame_pix_num = pix_num * c_;
|
|
for (int frame = 0; frame < frame_num; frame++) {
|
|
int index = 0;
|
|
for (int h = 0; h < h_; ++h) {
|
|
for (int w = 0; w < w_; ++w) {
|
|
temp.at<cv::Vec3f>(h, w) = {out_data[2 * pix_num + index + frame_pix_num * frame],
|
|
out_data[pix_num + index + frame_pix_num * frame],
|
|
out_data[index + frame_pix_num * frame]};
|
|
index += 1;
|
|
}
|
|
}
|
|
// tmp data type is float[0-1.0],convert to uint type
|
|
cv::Mat res = cv::Mat::zeros(temp.size(), CV_8UC3);
|
|
temp.convertTo(res, CV_8UC3, 255);
|
|
results.push_back(res);
|
|
}
|
|
return true;
|
|
}
|
|
} // namespace sr
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|