mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
234 lines
8.7 KiB
C++
234 lines
8.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/vision/matting/ppmatting/ppmatting.h"
|
|
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
#include "yaml-cpp/yaml.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace matting {
|
|
|
|
PPMatting::PPMatting(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format) {
|
|
config_file_ = config_file;
|
|
valid_cpu_backends = {Backend::ORT, Backend::PDINFER, Backend::LITE};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::TRT};
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool PPMatting::Initialize() {
|
|
if (!BuildPreprocessPipelineFromConfig()) {
|
|
FDERROR << "Failed to build preprocess pipeline from configuration file."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PPMatting::BuildPreprocessPipelineFromConfig() {
|
|
processors_.clear();
|
|
YAML::Node cfg;
|
|
processors_.push_back(std::make_shared<BGR2RGB>());
|
|
try {
|
|
cfg = YAML::LoadFile(config_file_);
|
|
} catch (YAML::BadFile& e) {
|
|
FDERROR << "Failed to load yaml file " << config_file_
|
|
<< ", maybe you should check this file." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
FDASSERT((cfg["Deploy"]["input_shape"]),
|
|
"The yaml file should include input_shape parameters");
|
|
// input_shape
|
|
// b c h w
|
|
auto input_shape = cfg["Deploy"]["input_shape"].as<std::vector<int>>();
|
|
FDASSERT(input_shape.size() == 4,
|
|
"The input_shape in yaml file need to be 4-dimensions, but now its "
|
|
"dimension is %zu.",
|
|
input_shape.size());
|
|
|
|
is_fixed_input_shape_ = false;
|
|
if (input_shape[2] > 0 && input_shape[3] > 0) {
|
|
is_fixed_input_shape_ = true;
|
|
}
|
|
if (input_shape[2] < 0 || input_shape[3] < 0) {
|
|
FDWARNING << "Detected dynamic input shape of your model, only Paddle "
|
|
"Inference / OpenVINO support this model now."
|
|
<< std::endl;
|
|
}
|
|
if (cfg["Deploy"]["transforms"]) {
|
|
auto preprocess_cfg = cfg["Deploy"]["transforms"];
|
|
int long_size = -1;
|
|
for (const auto& op : preprocess_cfg) {
|
|
FDASSERT(op.IsMap(),
|
|
"Require the transform information in yaml be Map type.");
|
|
if (op["type"].as<std::string>() == "LimitShort") {
|
|
int max_short = op["max_short"] ? op["max_short"].as<int>() : -1;
|
|
int min_short = op["min_short"] ? op["min_short"].as<int>() : -1;
|
|
if (is_fixed_input_shape_) {
|
|
// if the input shape is fixed, will resize by scale, and the max
|
|
// shape will not exceed input_shape
|
|
long_size = max_short;
|
|
std::vector<int> max_size = {input_shape[2], input_shape[3]};
|
|
processors_.push_back(
|
|
std::make_shared<ResizeByShort>(long_size, 1, true, max_size));
|
|
} else {
|
|
processors_.push_back(
|
|
std::make_shared<LimitShort>(max_short, min_short));
|
|
}
|
|
} else if (op["type"].as<std::string>() == "ResizeToIntMult") {
|
|
if (is_fixed_input_shape_) {
|
|
std::vector<int> max_size = {input_shape[2], input_shape[3]};
|
|
processors_.push_back(
|
|
std::make_shared<ResizeByShort>(long_size, 1, true, max_size));
|
|
} else {
|
|
int mult_int = op["mult_int"] ? op["mult_int"].as<int>() : 32;
|
|
processors_.push_back(std::make_shared<LimitByStride>(mult_int));
|
|
}
|
|
} else if (op["type"].as<std::string>() == "Normalize") {
|
|
std::vector<float> mean = {0.5, 0.5, 0.5};
|
|
std::vector<float> std = {0.5, 0.5, 0.5};
|
|
if (op["mean"]) {
|
|
mean = op["mean"].as<std::vector<float>>();
|
|
}
|
|
if (op["std"]) {
|
|
std = op["std"].as<std::vector<float>>();
|
|
}
|
|
processors_.push_back(std::make_shared<Normalize>(mean, std));
|
|
} else if (op["type"].as<std::string>() == "ResizeByShort") {
|
|
long_size = op["short_size"].as<int>();
|
|
if (is_fixed_input_shape_) {
|
|
std::vector<int> max_size = {input_shape[2], input_shape[3]};
|
|
processors_.push_back(
|
|
std::make_shared<ResizeByShort>(long_size, 1, true, max_size));
|
|
} else {
|
|
processors_.push_back(std::make_shared<ResizeByShort>(long_size));
|
|
}
|
|
}
|
|
}
|
|
// the default padding value is {127.5,127.5,127.5} so after normalizing,
|
|
// ((127.5/255)-0.5)/0.5 = 0.0
|
|
std::vector<float> value = {0.0, 0.0, 0.0};
|
|
processors_.push_back(std::make_shared<Cast>("float"));
|
|
processors_.push_back(
|
|
std::make_shared<PadToSize>(input_shape[3], input_shape[2], value));
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PPMatting::Preprocess(Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<int, 2>>* im_info) {
|
|
(*im_info)["input_shape"] = {mat->Height(), mat->Width()};
|
|
for (size_t i = 0; i < processors_.size(); ++i) {
|
|
if (!(*(processors_[i].get()))(mat)) {
|
|
FDERROR << "Failed to process image data in " << processors_[i]->Name()
|
|
<< "." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
(*im_info)["output_shape"] = {mat->Height(), mat->Width()};
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1);
|
|
output->name = InputInfoOfRuntime(0).name;
|
|
return true;
|
|
}
|
|
|
|
bool PPMatting::Postprocess(
|
|
std::vector<FDTensor>& infer_result, MattingResult* result,
|
|
const std::map<std::string, std::array<int, 2>>& im_info) {
|
|
FDASSERT((infer_result.size() == 1),
|
|
"The default number of output tensor must be 1 ");
|
|
FDTensor& alpha_tensor = infer_result.at(0); // (1, 1, h, w)
|
|
FDASSERT((alpha_tensor.shape[0] == 1), "Only support batch = 1 now.");
|
|
if (alpha_tensor.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
std::vector<int64_t> dim{0, 2, 3, 1};
|
|
function::Transpose(alpha_tensor, &alpha_tensor, dim);
|
|
alpha_tensor.Squeeze(0);
|
|
Mat mat = Mat::Create(alpha_tensor);
|
|
|
|
auto iter_ipt = im_info.find("input_shape");
|
|
auto iter_out = im_info.find("output_shape");
|
|
if (is_fixed_input_shape_) {
|
|
double scale_h = static_cast<double>(iter_out->second[0]) /
|
|
static_cast<double>(iter_ipt->second[0]);
|
|
double scale_w = static_cast<double>(iter_out->second[1]) /
|
|
static_cast<double>(iter_ipt->second[1]);
|
|
double actual_scale = std::min(scale_h, scale_w);
|
|
|
|
int size_before_pad_h = round(actual_scale * iter_ipt->second[0]);
|
|
int size_before_pad_w = round(actual_scale * iter_ipt->second[1]);
|
|
|
|
Crop::Run(&mat, 0, 0, size_before_pad_w, size_before_pad_h);
|
|
}
|
|
|
|
Resize::Run(&mat, iter_ipt->second[1], iter_ipt->second[0], -1.0f, -1.0f, 1,
|
|
false, ProcLib::OPENCV);
|
|
|
|
result->Clear();
|
|
// note: must be setup shape before Resize
|
|
result->contain_foreground = false;
|
|
result->shape = {iter_ipt->second[0], iter_ipt->second[1]};
|
|
int numel = iter_ipt->second[0] * iter_ipt->second[1];
|
|
int nbytes = numel * sizeof(float);
|
|
result->Resize(numel);
|
|
std::memcpy(result->alpha.data(), mat.Data(), nbytes);
|
|
return true;
|
|
}
|
|
|
|
bool PPMatting::Predict(cv::Mat* im, MattingResult* result) {
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> processed_data(1);
|
|
|
|
std::map<std::string, std::array<int, 2>> im_info;
|
|
|
|
if (!Preprocess(&mat, &(processed_data[0]), &im_info)) {
|
|
FDERROR << "Failed to preprocess input data while using model:"
|
|
<< ModelName() << "." << std::endl;
|
|
return false;
|
|
}
|
|
std::vector<FDTensor> infer_result(1);
|
|
if (!Infer(processed_data, &infer_result)) {
|
|
FDERROR << "Failed to inference while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!Postprocess(infer_result, result, im_info)) {
|
|
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace matting
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|