mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
204 lines
7.1 KiB
C++
204 lines
7.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/facedet/contrib/ultraface.h"
|
|
#include "fastdeploy/utils/perf.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace facedet {
|
|
|
|
UltraFace::UltraFace(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format) {
|
|
if (model_format == ModelFormat::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
} else {
|
|
valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool UltraFace::Initialize() {
|
|
// parameters for preprocess
|
|
size = {320, 240};
|
|
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
// Check if the input shape is dynamic after Runtime already initialized,
|
|
is_dynamic_input_ = false;
|
|
auto shape = InputInfoOfRuntime(0).shape;
|
|
for (int i = 0; i < shape.size(); ++i) {
|
|
// if height or width is dynamic
|
|
if (i >= 2 && shape[i] <= 0) {
|
|
is_dynamic_input_ = true;
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool UltraFace::Preprocess(
|
|
Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info) {
|
|
// ultraface's preprocess steps
|
|
// 1. resize
|
|
// 2. BGR->RGB
|
|
// 3. HWC->CHW
|
|
int resize_w = size[0];
|
|
int resize_h = size[1];
|
|
if (resize_h != mat->Height() || resize_w != mat->Width()) {
|
|
Resize::Run(mat, resize_w, resize_h);
|
|
}
|
|
|
|
BGR2RGB::Run(mat);
|
|
// Compute `result = mat * alpha + beta` directly by channel
|
|
// Reference: detect_imgs_onnx.py#L73
|
|
std::vector<float> alpha = {1.0f / 128.0f, 1.0f / 128.0f, 1.0f / 128.0f};
|
|
std::vector<float> beta = {-127.0f * (1.0f / 128.0f),
|
|
-127.0f * (1.0f / 128.0f),
|
|
-127.0f * (1.0f / 128.0f)}; // RGB;
|
|
Convert::Run(mat, alpha, beta);
|
|
|
|
// Record output shape of preprocessed image
|
|
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
|
|
static_cast<float>(mat->Width())};
|
|
|
|
HWC2CHW::Run(mat);
|
|
Cast::Run(mat, "float");
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
|
|
return true;
|
|
}
|
|
|
|
bool UltraFace::Postprocess(
|
|
std::vector<FDTensor>& infer_result, FaceDetectionResult* result,
|
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
|
float conf_threshold, float nms_iou_threshold) {
|
|
// ultraface has 2 output tensors, scores & boxes
|
|
FDASSERT(
|
|
(infer_result.size() == 2),
|
|
"The default number of output tensor must be 2 according to ultraface.");
|
|
FDTensor& scores_tensor = infer_result.at(0); // (1,4420,2)
|
|
FDTensor& boxes_tensor = infer_result.at(1); // (1,4420,4)
|
|
FDASSERT((scores_tensor.shape[0] == 1), "Only support batch =1 now.");
|
|
FDASSERT((boxes_tensor.shape[0] == 1), "Only support batch =1 now.");
|
|
if (scores_tensor.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
if (boxes_tensor.dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
result->Clear();
|
|
// must be setup landmarks_per_face before reserve.
|
|
// ultraface detector does not detect landmarks by default.
|
|
result->landmarks_per_face = 0;
|
|
result->Reserve(boxes_tensor.shape[1]);
|
|
|
|
float* scores_ptr = static_cast<float*>(scores_tensor.Data());
|
|
float* boxes_ptr = static_cast<float*>(boxes_tensor.Data());
|
|
const size_t num_bboxes = boxes_tensor.shape[1]; // e.g 4420
|
|
// fetch original image shape
|
|
auto iter_ipt = im_info.find("input_shape");
|
|
FDASSERT((iter_ipt != im_info.end()),
|
|
"Cannot find input_shape from im_info.");
|
|
float ipt_h = iter_ipt->second[0];
|
|
float ipt_w = iter_ipt->second[1];
|
|
|
|
// decode bounding boxes
|
|
for (size_t i = 0; i < num_bboxes; ++i) {
|
|
float confidence = scores_ptr[2 * i + 1];
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold) {
|
|
continue;
|
|
}
|
|
float x1 = boxes_ptr[4 * i + 0] * ipt_w;
|
|
float y1 = boxes_ptr[4 * i + 1] * ipt_h;
|
|
float x2 = boxes_ptr[4 * i + 2] * ipt_w;
|
|
float y2 = boxes_ptr[4 * i + 3] * ipt_h;
|
|
result->boxes.emplace_back(std::array<float, 4>{x1, y1, x2, y2});
|
|
result->scores.push_back(confidence);
|
|
}
|
|
|
|
if (result->boxes.size() == 0) {
|
|
return true;
|
|
}
|
|
|
|
utils::NMS(result, nms_iou_threshold);
|
|
|
|
// scale and clip box
|
|
for (size_t i = 0; i < result->boxes.size(); ++i) {
|
|
result->boxes[i][0] = std::max(result->boxes[i][0], 0.0f);
|
|
result->boxes[i][1] = std::max(result->boxes[i][1], 0.0f);
|
|
result->boxes[i][2] = std::max(result->boxes[i][2], 0.0f);
|
|
result->boxes[i][3] = std::max(result->boxes[i][3], 0.0f);
|
|
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
|
|
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
|
|
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
|
|
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool UltraFace::Predict(cv::Mat* im, FaceDetectionResult* result,
|
|
float conf_threshold, float nms_iou_threshold) {
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> input_tensors(1);
|
|
|
|
std::map<std::string, std::array<float, 2>> im_info;
|
|
|
|
// Record the shape of image and the shape of preprocessed image
|
|
im_info["input_shape"] = {static_cast<float>(mat.Height()),
|
|
static_cast<float>(mat.Width())};
|
|
im_info["output_shape"] = {static_cast<float>(mat.Height()),
|
|
static_cast<float>(mat.Width())};
|
|
|
|
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
|
|
FDERROR << "Failed to preprocess input image." << std::endl;
|
|
return false;
|
|
}
|
|
input_tensors[0].name = InputInfoOfRuntime(0).name;
|
|
std::vector<FDTensor> output_tensors;
|
|
if (!Infer(input_tensors, &output_tensors)) {
|
|
FDERROR << "Failed to inference." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!Postprocess(output_tensors, result, im_info, conf_threshold,
|
|
nms_iou_threshold)) {
|
|
FDERROR << "Failed to post process." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace facedet
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|