Files
FastDeploy/fastdeploy/vision/detection/ppdet/base.h
Jason beaa0fd190 [Model] Refactor PaddleDetection module (#575)
* Add namespace for functions

* Refactor PaddleDetection module

* finish all the single image test

* Update preprocessor.cc

* fix some litte detail

* add python api

* Update postprocessor.cc
2022-11-15 10:43:23 +08:00

91 lines
3.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/detection/ppdet/preprocessor.h"
#include "fastdeploy/vision/detection/ppdet/postprocessor.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
/** \brief All object detection model APIs are defined inside this namespace
*
*/
namespace detection {
/*! @brief Base model object used when to load a model exported by PaddleDetection
*/
class FASTDEPLOY_DECL PPDetBase : public FastDeployModel {
public:
/** \brief Set path of model file and configuration file, and the configuration of runtime
*
* \param[in] model_file Path of model file, e.g ppyoloe/model.pdmodel
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] config_file Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in `valid_cpu_backends`
* \param[in] model_format Model format of the loaded model, default is Paddle format
*/
PPDetBase(const std::string& model_file, const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE);
/// Get model's name
virtual std::string ModelName() const { return "PaddleDetection/BaseModel"; }
/** \brief DEPRECATED Predict the detection result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, DetectionResult* result);
/** \brief Predict the detection result for an input image
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output detection result
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(const cv::Mat& im, DetectionResult* result);
/** \brief Predict the detection result for an input image list
* \param[in] im The input image list, all the elements come from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] results The output detection result list
* \return true if the prediction successed, otherwise false
*/
virtual bool BatchPredict(const std::vector<cv::Mat>& imgs,
std::vector<DetectionResult>* results);
PaddleDetPreprocessor& GetPreprocessor() {
return preprocessor_;
}
PaddleDetPostprocessor& GetPostprocessor() {
return postprocessor_;
}
protected:
virtual bool Initialize();
PaddleDetPreprocessor preprocessor_;
PaddleDetPostprocessor postprocessor_;
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy