mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* add onnx_ort_runtime demo * rm in requirements * support batch eval * fixed MattingResults bug * move assignment for DetectionResult
351 lines
11 KiB
C++
Executable File
351 lines
11 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#pragma once
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "opencv2/core/core.hpp"
|
|
#include <set>
|
|
|
|
namespace fastdeploy {
|
|
/** \brief All C++ FastDeploy Vision Models APIs are defined inside this namespace
|
|
*
|
|
*/
|
|
namespace vision {
|
|
enum FASTDEPLOY_DECL ResultType {
|
|
UNKNOWN_RESULT,
|
|
CLASSIFY,
|
|
DETECTION,
|
|
SEGMENTATION,
|
|
OCR,
|
|
MOT,
|
|
FACE_DETECTION,
|
|
FACE_ALIGNMENT,
|
|
FACE_RECOGNITION,
|
|
MATTING,
|
|
MASK,
|
|
KEYPOINT_DETECTION,
|
|
HEADPOSE,
|
|
};
|
|
|
|
struct FASTDEPLOY_DECL BaseResult {
|
|
ResultType type = ResultType::UNKNOWN_RESULT;
|
|
};
|
|
|
|
/*! @brief Classify result structure for all the image classify models
|
|
*/
|
|
struct FASTDEPLOY_DECL ClassifyResult : public BaseResult {
|
|
ClassifyResult() = default;
|
|
/// Classify result for an image
|
|
std::vector<int32_t> label_ids;
|
|
/// The confidence for each classify result
|
|
std::vector<float> scores;
|
|
ResultType type = ResultType::CLASSIFY;
|
|
|
|
/// Clear result
|
|
void Clear();
|
|
|
|
/// Copy constructor
|
|
ClassifyResult(const ClassifyResult& other) = default;
|
|
/// Move assignment
|
|
ClassifyResult& operator=(ClassifyResult&& other);
|
|
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
/*! Mask structure, used in DetectionResult for instance segmentation models
|
|
*/
|
|
struct FASTDEPLOY_DECL Mask : public BaseResult {
|
|
/// Mask data buffer
|
|
std::vector<int32_t> data;
|
|
/// Shape of mask
|
|
std::vector<int64_t> shape; // (H,W) ...
|
|
ResultType type = ResultType::MASK;
|
|
|
|
/// clear mask
|
|
void Clear();
|
|
|
|
/// Return a mutable pointer of the mask data buffer
|
|
void* Data() { return data.data(); }
|
|
|
|
/// Return a pointer of the mask data buffer for read only
|
|
const void* Data() const { return data.data(); }
|
|
|
|
/// Reserve size for mask data buffer
|
|
void Reserve(int size);
|
|
|
|
/// Resize the mask data buffer
|
|
void Resize(int size);
|
|
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
|
|
/*! @brief Detection result structure for all the object detection models and instance segmentation models
|
|
*/
|
|
struct FASTDEPLOY_DECL DetectionResult : public BaseResult {
|
|
DetectionResult() = default;
|
|
/** \brief All the detected object boxes for an input image, the size of `boxes` is the number of detected objects, and the element of `boxes` is a array of 4 float values, means [xmin, ymin, xmax, ymax]
|
|
*/
|
|
std::vector<std::array<float, 4>> boxes;
|
|
/** \brief The confidence for all the detected objects
|
|
*/
|
|
std::vector<float> scores;
|
|
/// The classify label for all the detected objects
|
|
std::vector<int32_t> label_ids;
|
|
/** \brief For instance segmentation model, `masks` is the predict mask for all the deteced objects
|
|
*/
|
|
std::vector<Mask> masks;
|
|
//// Shows if the DetectionResult has mask
|
|
bool contain_masks = false;
|
|
|
|
ResultType type = ResultType::DETECTION;
|
|
|
|
/// Copy constructor
|
|
DetectionResult(const DetectionResult& res);
|
|
/// Move assignment
|
|
DetectionResult& operator=(DetectionResult&& other);
|
|
|
|
/// Clear detection result
|
|
void Clear();
|
|
|
|
void Reserve(int size);
|
|
|
|
void Resize(int size);
|
|
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
/*! @brief KeyPoint Detection result structure for all the keypoint detection models
|
|
*/
|
|
struct FASTDEPLOY_DECL KeyPointDetectionResult : public BaseResult {
|
|
/** \brief All the coordinates of detected keypoints for an input image, the size of `keypoints` is num_detected_objects * num_joints, and the element of `keypoint` is a array of 2 float values, means [x, y]
|
|
*/
|
|
std::vector<std::array<float, 2>> keypoints;
|
|
//// The confidence for all the detected points
|
|
std::vector<float> scores;
|
|
//// Number of joints for a detected object
|
|
int num_joints = -1;
|
|
|
|
ResultType type = ResultType::KEYPOINT_DETECTION;
|
|
/// Clear detection result
|
|
void Clear();
|
|
|
|
void Reserve(int size);
|
|
|
|
void Resize(int size);
|
|
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
struct FASTDEPLOY_DECL OCRResult : public BaseResult {
|
|
std::vector<std::array<int, 8>> boxes;
|
|
|
|
std::vector<std::string> text;
|
|
std::vector<float> rec_scores;
|
|
|
|
std::vector<float> cls_scores;
|
|
std::vector<int32_t> cls_labels;
|
|
|
|
ResultType type = ResultType::OCR;
|
|
|
|
void Clear();
|
|
|
|
std::string Str();
|
|
};
|
|
|
|
/*! @brief MOT(Multi-Object Tracking) result structure for all the MOT models
|
|
*/
|
|
struct FASTDEPLOY_DECL MOTResult : public BaseResult {
|
|
/** \brief All the tracking object boxes for an input image, the size of `boxes` is the number of tracking objects, and the element of `boxes` is a array of 4 float values, means [xmin, ymin, xmax, ymax]
|
|
*/
|
|
std::vector<std::array<int, 4>> boxes;
|
|
/** \brief All the tracking object ids
|
|
*/
|
|
std::vector<int> ids;
|
|
/** \brief The confidence for all the tracking objects
|
|
*/
|
|
std::vector<float> scores;
|
|
/** \brief The classify label id for all the tracking object
|
|
*/
|
|
std::vector<int> class_ids;
|
|
|
|
ResultType type = ResultType::MOT;
|
|
/// Clear MOT result
|
|
void Clear();
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
|
|
|
|
/*! @brief Face detection result structure for all the face detection models
|
|
*/
|
|
struct FASTDEPLOY_DECL FaceDetectionResult : public BaseResult {
|
|
/** \brief All the detected object boxes for an input image, the size of `boxes` is the number of detected objects, and the element of `boxes` is a array of 4 float values, means [xmin, ymin, xmax, ymax]
|
|
*/
|
|
std::vector<std::array<float, 4>> boxes;
|
|
/** \brief
|
|
* If the model detect face with landmarks, every detected object box correspoing to a landmark, which is a array of 2 float values, means location [x,y]
|
|
*/
|
|
std::vector<std::array<float, 2>> landmarks;
|
|
/** \brief
|
|
* Indicates the confidence of all targets detected from a single image, and the number of elements is consistent with boxes.size()
|
|
*/
|
|
std::vector<float> scores;
|
|
ResultType type = ResultType::FACE_DETECTION;
|
|
/** \brief
|
|
* `landmarks_per_face` indicates the number of face landmarks for each detected face
|
|
* if the model's output contains face landmarks (such as YOLOv5Face, SCRFD, ...)
|
|
*/
|
|
int landmarks_per_face;
|
|
|
|
FaceDetectionResult() { landmarks_per_face = 0; }
|
|
FaceDetectionResult(const FaceDetectionResult& res);
|
|
/// Clear detection result
|
|
void Clear();
|
|
|
|
void Reserve(int size);
|
|
|
|
void Resize(int size);
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
/*! @brief Face Alignment result structure for all the face alignment models
|
|
*/
|
|
struct FASTDEPLOY_DECL FaceAlignmentResult : public BaseResult {
|
|
/** \brief All the coordinates of detected landmarks for an input image, and the element of `landmarks` is a array of 2 float values, means [x, y]
|
|
*/
|
|
std::vector<std::array<float, 2>> landmarks;
|
|
|
|
ResultType type = ResultType::FACE_ALIGNMENT;
|
|
/// Clear facealignment result
|
|
void Clear();
|
|
|
|
void Reserve(int size);
|
|
|
|
void Resize(int size);
|
|
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
/*! @brief Segmentation result structure for all the segmentation models
|
|
*/
|
|
struct FASTDEPLOY_DECL SegmentationResult : public BaseResult {
|
|
/** \brief
|
|
* `label_map` stores the pixel-level category labels for input image. the number of pixels is equal to label_map.size()
|
|
*/
|
|
std::vector<uint8_t> label_map;
|
|
/** \brief
|
|
* `score_map` stores the probability of the predicted label for each pixel of input image.
|
|
*/
|
|
std::vector<float> score_map;
|
|
/// The output shape, means [H, W]
|
|
std::vector<int64_t> shape;
|
|
bool contain_score_map = false;
|
|
|
|
ResultType type = ResultType::SEGMENTATION;
|
|
/// Clear detection result
|
|
void Clear();
|
|
|
|
void Reserve(int size);
|
|
|
|
void Resize(int size);
|
|
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
/*! @brief Face recognition result structure for all the Face recognition models
|
|
*/
|
|
struct FASTDEPLOY_DECL FaceRecognitionResult : public BaseResult {
|
|
/** \brief The feature embedding that represents the final extraction of the face recognition model can be used to calculate the feature similarity between faces.
|
|
*/
|
|
std::vector<float> embedding;
|
|
|
|
ResultType type = ResultType::FACE_RECOGNITION;
|
|
|
|
FaceRecognitionResult() {}
|
|
FaceRecognitionResult(const FaceRecognitionResult& res);
|
|
/// Clear detection result
|
|
void Clear();
|
|
|
|
void Reserve(int size);
|
|
|
|
void Resize(int size);
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
/*! @brief Matting result structure for all the Matting models
|
|
*/
|
|
struct FASTDEPLOY_DECL MattingResult : public BaseResult {
|
|
/** \brief
|
|
`alpha` is a one-dimensional vector, which is the predicted alpha transparency value. The range of values is [0., 1.], and the length is hxw. h, w are the height and width of the input image
|
|
*/
|
|
std::vector<float> alpha; // h x w
|
|
/** \brief
|
|
If the model can predict foreground, `foreground` save the predicted foreground image, the shape is [hight,width,channel] generally.
|
|
*/
|
|
std::vector<float> foreground; // h x w x c (c=3 default)
|
|
/** \brief
|
|
* The shape of output result, when contain_foreground == false, shape only contains (h, w), when contain_foreground == true, shape contains (h, w, c), and c is generally 3
|
|
*/
|
|
std::vector<int64_t> shape;
|
|
/** \brief
|
|
If the model can predict alpha matte and foreground, contain_foreground = true, default false
|
|
*/
|
|
bool contain_foreground = false;
|
|
|
|
ResultType type = ResultType::MATTING;
|
|
|
|
MattingResult() {}
|
|
MattingResult(const MattingResult& res);
|
|
/// Clear detection result
|
|
void Clear();
|
|
|
|
void Reserve(int size);
|
|
|
|
void Resize(int size);
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
/*! @brief HeadPose result structure for all the headpose models
|
|
*/
|
|
struct FASTDEPLOY_DECL HeadPoseResult : public BaseResult {
|
|
/** \brief EulerAngles for an input image, and the element of `euler_angles` is a vector, contains {yaw, pitch, roll}
|
|
*/
|
|
std::vector<float> euler_angles;
|
|
|
|
ResultType type = ResultType::HEADPOSE;
|
|
/// Clear headpose result
|
|
void Clear();
|
|
|
|
void Reserve(int size);
|
|
|
|
void Resize(int size);
|
|
|
|
/// Debug function, convert the result to string to print
|
|
std::string Str();
|
|
};
|
|
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|