Files
FastDeploy/fastdeploy/backends/poros/poros_backend.h
WJJ1995 f5c94e5471 Support Poros Backend (#188)
* Add poros backend

* Add torch lib

* Add python3 lib

* set c++ 14 for poros

* fixed bugs

* fixed grammer bugs

* fixed grammer bugs

* fixed code bugs

* fixed code bugs

* fixed CreatePorosValue bug

* Add AtType2String for Log

* fixed trt_option

* fixed poros.cmake path

* fixed grammer bug

* fixed grammer bug

* fixed ambiguous reference

* fixed ambiguous reference

* fixed reference error

* fixed include files

* rm ENABLE_TRT_BACKEND in poros

* update CMakeLists.txt

* fixed CMakeLists.txt

* Add libtorch.so in CMakeLists.txt

* Fixed CMakeLists.txt

* Fixed CMakeLists.txt

* Fixed copy bug

* Fixed copy bug

* Fixed copy bug

* Fixed Cmake

* Fixed Cmake

* debug

* debug

* debug

* debug

* debug

* debug

* debug utils

* debug utils

* copy to cpu

* rm log info

* test share mem

* test share mem

* test share mem

* test multi outputs

* test multi outputs

* test multi outputs

* test multi outputs

* test multi outputs

* test multi outputs

* test multi outputs

* time cost

* time cost

* fixed bug

* time collect

* mem copy

* mem copy

* rm time log

* rm share mem

* fixed multi inputs bug

* add set_input_dtypes func

* add SetInputDtypes

* fixed bug

* fixed bug

* fixed prewarm data order

* debug

* debug

* debug

* debug

* debug

* debug

* debug

* debug

* debug

* debug

* debug

* fixed bug

* Add compile func

* Add compile func

* Add compile func

* Add is_dynamic option

* Add is_dynamic option

* Add is_dynamic option

* Add is_dynamic option

* rm infer log

* add cuda11.6 poros lib

* fixed bug

* fixed bug

* fixed multi outputs

* fixed multi outputs

* fixed multi outputs

* fixed multi outputs

* fixed multi outputs

* fixed multi outputs

* fixed multi outputs

* fixed multi outputs

* fixed multi outputs

* fixed multi outputs

* fixed multi outputs

* rm logs

* test

* test

* test

* add test log

* add test log

* add test log

* add test log

* support cpu

* support cpu

* support cpu

* support cpu

* support member variable definition

* rm useless log

* fixed name

* resolve conflict

* resolve conflict

* resolve conflict

* fixed cmake

* add GetInputInfos&GetOutputInfos

* add GetInputInfos&GetOutputInfos

* fixed bug

* fixed runtime.py

* add compile func

* add np

* deal with comments

* rm to_inter func

* add property
2022-10-17 15:28:12 +08:00

108 lines
3.4 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "fastdeploy/backends/backend.h"
#include "fastdeploy/backends/poros/common/compile.h"
#include "fastdeploy/backends/poros/common/poros_module.h"
namespace fastdeploy {
struct PorosBackendOption {
#ifdef WITH_GPU
bool use_gpu = true;
#else
bool use_gpu = false;
#endif
int gpu_id = 0;
bool long_to_int = true;
// There is calculation precision in tf32 mode on A10, it can bring some
// performance improvement, but there may be diff
bool use_nvidia_tf32 = false;
// Threshold for the number of non-const ops
int32_t unconst_ops_thres = -1;
std::string poros_file = "";
std::vector<FDDataType> prewarm_datatypes = {FDDataType::FP32};
// TRT options
bool enable_fp16 = false;
bool enable_int8 = false;
bool is_dynamic = false;
size_t max_batch_size = 32;
size_t max_workspace_size = 1 << 30;
};
// Convert data type from fastdeploy to poros
at::ScalarType GetPorosDtype(const FDDataType& fd_dtype);
// Convert data type from poros to fastdeploy
FDDataType GetFdDtype(const at::ScalarType& dtype);
// at::ScalarType to std::string for FDERROR
std::string AtType2String(const at::ScalarType& dtype);
// Create at::Tensor
// is_backend_cuda specify if Poros use GPU Device
// While is_backend_cuda = true, and tensor.device = Device::GPU
at::Tensor CreatePorosValue(FDTensor& tensor, bool is_backend_cuda = false);
// Copy memory data from at::Tensor to fastdeploy::FDTensor
void CopyTensorToCpu(const at::Tensor& tensor, FDTensor* fd_tensor,
bool is_backend_cuda = false);
class PorosBackend : public BaseBackend {
public:
PorosBackend() {}
virtual ~PorosBackend() = default;
void BuildOption(const PorosBackendOption& option);
bool InitFromTorchScript(
const std::string& model_file,
const PorosBackendOption& option = PorosBackendOption());
bool InitFromPoros(const std::string& model_file,
const PorosBackendOption& option = PorosBackendOption());
bool Compile(const std::string& model_file,
std::vector<std::vector<FDTensor>>& prewarm_tensors,
const PorosBackendOption& option = PorosBackendOption());
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs);
int NumInputs() const { return _numinputs; }
int NumOutputs() const { return _numoutputs; }
TensorInfo GetInputInfo(int index) override;
TensorInfo GetOutputInfo(int index) override;
std::vector<TensorInfo> GetInputInfos() override;
std::vector<TensorInfo> GetOutputInfos() override;
private:
baidu::mirana::poros::PorosOptions _options;
std::unique_ptr<baidu::mirana::poros::PorosModule> _poros_module;
std::vector<std::vector<c10::IValue>> _prewarm_datas;
int _numinputs = 1;
int _numoutputs = 1;
};
} // namespace fastdeploy