Files
FastDeploy/fastdeploy/backends/poros/common/iengine.h
WJJ1995 718698a32a [Model] add RobustVideoMatting model (#400)
* add yolov5cls

* fixed bugs

* fixed bugs

* fixed preprocess bug

* add yolov5cls readme

* deal with comments

* Add YOLOv5Cls Note

* add yolov5cls test

* add rvm support

* support rvm model

* add rvm demo

* fixed bugs

* add rvm readme

* add TRT support

* add trt support

* add rvm test

* add EXPORT.md

* rename export.md

* rm poros doxyen

* deal with comments

* deal with comments

* add rvm video_mode note

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2022-10-26 14:30:04 +08:00

80 lines
2.3 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
//from pytorch
#include "torch/script.h"
#include "torch/csrc/jit/ir/ir.h"
#include "ATen/core/interned_strings.h"
#include "plugin_create.h"
namespace baidu {
namespace mirana {
namespace poros {
struct PorosGraph {
torch::jit::Graph* graph = NULL;
torch::jit::Node* node = NULL;
};
typedef uint64_t EngineID;
class IEngine : public IPlugin, public torch::CustomClassHolder{
public:
virtual ~IEngine() {}
/**
* @brief init, initialization must be successful if the init is successful
* @return int
* @retval 0 => success, <0 => fail
**/
virtual int init() = 0;
/**
* @brief During compilation, the subgraph is converted into the graph structure of the corresponding engine and stored inside the engine, so that the execute_engine at runtime can be called
* @param [in] sub_graph : subgraph
* @return [res]int
* @retval 0 => success, <0 => fail
**/
virtual int transform(const PorosGraph& sub_graph) = 0;
/**
* @brief Subgraph execution period logic
* @param [in] inputs : input tensor
* @return [res] output tensor
**/
virtual std::vector<at::Tensor> excute_engine(const std::vector<at::Tensor>& inputs) = 0;
virtual void register_module_attribute(const std::string& name, torch::jit::Module& module) = 0;
// Logo
virtual const std::string who_am_i() = 0;
// Whether the node is supported by the current engine
bool is_node_supported(const torch::jit::Node* node);
public:
std::pair<uint64_t, uint64_t> _num_io; // Number of input/output parameters
EngineID _id;
};
} // namespace poros
} // namespace mirana
} // namespace baidu