mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* * 新增scrfd rknpu2代码 * * 新增scrfd python代码 * 修正文档 * 修正文档以及部分错误 * 修改文档 * 修复部分错误 * 修复部分错误 * 修复部分错误 * scrfd更新代码 * scrfd更新代码
79 lines
2.0 KiB
C++
79 lines
2.0 KiB
C++
#include <iostream>
|
|
#include <string>
|
|
#include "fastdeploy/vision.h"
|
|
|
|
void InferScrfd(const std::string& device = "cpu");
|
|
|
|
int main() {
|
|
InferScrfd("npu");
|
|
return 0;
|
|
}
|
|
|
|
fastdeploy::RuntimeOption GetOption(const std::string& device) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (device == "npu") {
|
|
option.UseRKNPU2();
|
|
} else {
|
|
option.UseCpu();
|
|
}
|
|
return option;
|
|
}
|
|
|
|
fastdeploy::ModelFormat GetFormat(const std::string& device) {
|
|
auto format = fastdeploy::ModelFormat::ONNX;
|
|
if (device == "npu") {
|
|
format = fastdeploy::ModelFormat::RKNN;
|
|
} else {
|
|
format = fastdeploy::ModelFormat::ONNX;
|
|
}
|
|
return format;
|
|
}
|
|
|
|
std::string GetModelPath(std::string& model_path, const std::string& device) {
|
|
if (device == "npu") {
|
|
model_path += "rknn";
|
|
} else {
|
|
model_path += "onnx";
|
|
}
|
|
return model_path;
|
|
}
|
|
|
|
void InferScrfd(const std::string& device) {
|
|
std::string model_file =
|
|
"./model/scrfd_500m_bnkps_shape640x640_rk3588.";
|
|
std::string params_file;
|
|
|
|
fastdeploy::RuntimeOption option = GetOption(device);
|
|
fastdeploy::ModelFormat format = GetFormat(device);
|
|
model_file = GetModelPath(model_file, device);
|
|
auto model = fastdeploy::vision::facedet::SCRFD(
|
|
model_file, params_file, option, format);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
auto image_file =
|
|
"./images/test_lite_face_detector_3.jpg";
|
|
auto im = cv::imread(image_file);
|
|
|
|
if (device == "npu") {
|
|
model.DisableNormalizeAndPermute();
|
|
}
|
|
|
|
fastdeploy::vision::FaceDetectionResult res;
|
|
clock_t start = clock();
|
|
if (!model.Predict(&im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
clock_t end = clock();
|
|
auto dur = static_cast<double>(end - start);
|
|
printf("InferScrfd use time:%f\n",
|
|
(dur / CLOCKS_PER_SEC));
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
auto vis_im = fastdeploy::vision::Visualize::VisFaceDetection(im, res);
|
|
cv::imwrite("vis_result.jpg", vis_im);
|
|
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
|
} |