* add code and docs for ppclas examples * fix doc * add code for printing results * add ppcls demo and docs * modify example according to refined c api * modify example code and docs for ppcls and ppdet * modify example code and docs for ppcls and ppdet * update ppdet demo * fix demo codes * fix doc * release resource when failed * fix * fix name * fix name
English | 简体中文
PaddleClas Model Deployment
Model Description
Now FastDeploy supports the deployment of the following models
- PP-LCNet Models
- PP-LCNetV2 Models
- EfficientNet Models
- GhostNet Models
- MobileNet Models(including v1,v2,v3)
- ShuffleNet Models
- SqueezeNet Models
- Inception Models
- PP-HGNet Models
- ResNet Models(including vd series)
Prepare PaddleClas Deployment Model
For PaddleClas model export, refer to Model Export.
Attention:The model exported by PaddleClas contains two files, including inference.pdmodel and inference.pdiparams. However, it is necessary to prepare the generic inference_cls.yaml file provided by PaddleClas to meet the requirements of deployment. FastDeploy will obtain from the yaml file the preprocessing information required during inference. FastDeploy will get the preprocessing information needed by the model from the yaml file. Developers can directly download this file. But they need to modify the configuration parameters in the yaml file based on personalized needs. Refer to the configuration information in the infer section of the PaddleClas model training config.
Download Pre-trained Model
For developers' testing, some models exported by PaddleClas (including the inference_cls.yaml file) are provided below. Developers can download them directly.
| Model | Parameter File Size | Input Shape | Top1 | Top5 |
|---|---|---|---|---|
| PPLCNet_x1_0 | 12MB | 224x224 | 71.32% | 90.03% |
| PPLCNetV2_base | 26MB | 224x224 | 77.04% | 93.27% |
| EfficientNetB7 | 255MB | 600x600 | 84.3% | 96.9% |
| EfficientNetB0_small | 18MB | 224x224 | 75.8% | 75.8% |
| GhostNet_x1_3_ssld | 29MB | 224x224 | 75.7% | 92.5% |
| GhostNet_x0_5 | 10MB | 224x224 | 66.8% | 86.9% |
| MobileNetV1_x0_25 | 1.9MB | 224x224 | 51.4% | 75.5% |
| MobileNetV1_ssld | 17MB | 224x224 | 77.9% | 93.9% |
| MobileNetV2_x0_25 | 5.9MB | 224x224 | 53.2% | 76.5% |
| MobileNetV2_ssld | 14MB | 224x224 | 76.74% | 93.39% |
| MobileNetV3_small_x0_35_ssld | 6.4MB | 224x224 | 55.55% | 77.71% |
| MobileNetV3_large_x1_0_ssld | 22MB | 224x224 | 78.96% | 94.48% |
| ShuffleNetV2_x0_25 | 2.4MB | 224x224 | 49.9% | 73.79% |
| ShuffleNetV2_x2_0 | 29MB | 224x224 | 73.15% | 91.2% |
| SqueezeNet1_1 | 4.8MB | 224x224 | 60.1% | 81.9% |
| InceptionV3 | 92MB | 299x299 | 79.14% | 94.59% |
| PPHGNet_tiny_ssld | 57MB | 224x224 | 81.95% | 96.12% |
| PPHGNet_base_ssld | 274MB | 224x224 | 85.0% | 97.35% |
| ResNet50_vd | 98MB | 224x224 | 79.12% | 94.44% |