Files
FastDeploy/fastdeploy/runtime/backends/paddle/ops/voxelize_op.cc
DefTruth 99c2b6592d [Backend] refactor paddle custom ops -> fastdeploy::paddle_custom_ops (#2101)
* [cmake] upgrade windows paddle inference -> 2.5.0

* [cmake] upgrade windows paddle inference -> 2.5.0

* fix paddle custom ops bug on windows

* [Backend] refactor paddle custom ops
2023-07-13 09:00:03 +08:00

204 lines
8.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <vector>
#if defined(PADDLEINFERENCE_API_COMPAT_2_4_x)
#include "paddle/include/experimental/ext_all.h"
#elif defined(PADDLEINFERENCE_API_COMPAT_2_5_x)
#include "paddle/include/paddle/extension.h"
#else
#include "paddle/extension.h"
#endif
namespace fastdeploy {
namespace paddle_custom_ops {
template <typename T, typename T_int>
bool hard_voxelize_cpu_kernel(
const T *points, const float point_cloud_range_x_min,
const float point_cloud_range_y_min, const float point_cloud_range_z_min,
const float voxel_size_x, const float voxel_size_y,
const float voxel_size_z, const int grid_size_x, const int grid_size_y,
const int grid_size_z, const int64_t num_points, const int num_point_dim,
const int max_num_points_in_voxel, const int max_voxels, T *voxels,
T_int *coords, T_int *num_points_per_voxel, T_int *grid_idx_to_voxel_idx,
T_int *num_voxels) {
std::fill(voxels,
voxels + max_voxels * max_num_points_in_voxel * num_point_dim,
static_cast<T>(0));
num_voxels[0] = 0;
int voxel_idx, grid_idx, curr_num_point;
int coord_x, coord_y, coord_z;
for (int point_idx = 0; point_idx < num_points; ++point_idx) {
coord_x = floor(
(points[point_idx * num_point_dim + 0] - point_cloud_range_x_min) /
voxel_size_x);
coord_y = floor(
(points[point_idx * num_point_dim + 1] - point_cloud_range_y_min) /
voxel_size_y);
coord_z = floor(
(points[point_idx * num_point_dim + 2] - point_cloud_range_z_min) /
voxel_size_z);
if (coord_x < 0 || coord_x > grid_size_x || coord_x == grid_size_x) {
continue;
}
if (coord_y < 0 || coord_y > grid_size_y || coord_y == grid_size_y) {
continue;
}
if (coord_z < 0 || coord_z > grid_size_z || coord_z == grid_size_z) {
continue;
}
grid_idx =
coord_z * grid_size_y * grid_size_x + coord_y * grid_size_x + coord_x;
voxel_idx = grid_idx_to_voxel_idx[grid_idx];
if (voxel_idx == -1) {
voxel_idx = num_voxels[0];
if (num_voxels[0] == max_voxels || num_voxels[0] > max_voxels) {
continue;
}
num_voxels[0]++;
grid_idx_to_voxel_idx[grid_idx] = voxel_idx;
coords[voxel_idx * 3 + 0] = coord_z;
coords[voxel_idx * 3 + 1] = coord_y;
coords[voxel_idx * 3 + 2] = coord_x;
}
curr_num_point = num_points_per_voxel[voxel_idx];
if (curr_num_point < max_num_points_in_voxel) {
for (int j = 0; j < num_point_dim; ++j) {
voxels[voxel_idx * max_num_points_in_voxel * num_point_dim +
curr_num_point * num_point_dim + j] =
points[point_idx * num_point_dim + j];
}
num_points_per_voxel[voxel_idx] = curr_num_point + 1;
}
}
return true;
}
std::vector<paddle::Tensor> hard_voxelize_cpu(
const paddle::Tensor &points, const std::vector<float> &voxel_size,
const std::vector<float> &point_cloud_range,
const int max_num_points_in_voxel, const int max_voxels) {
auto num_points = points.shape()[0];
auto num_point_dim = points.shape()[1];
const float voxel_size_x = voxel_size[0];
const float voxel_size_y = voxel_size[1];
const float voxel_size_z = voxel_size[2];
const float point_cloud_range_x_min = point_cloud_range[0];
const float point_cloud_range_y_min = point_cloud_range[1];
const float point_cloud_range_z_min = point_cloud_range[2];
int grid_size_x = static_cast<int>(
round((point_cloud_range[3] - point_cloud_range[0]) / voxel_size_x));
int grid_size_y = static_cast<int>(
round((point_cloud_range[4] - point_cloud_range[1]) / voxel_size_y));
int grid_size_z = static_cast<int>(
round((point_cloud_range[5] - point_cloud_range[2]) / voxel_size_z));
auto voxels =
paddle::empty({max_voxels, max_num_points_in_voxel, num_point_dim},
paddle::DataType::FLOAT32, paddle::CPUPlace());
auto coords = paddle::full({max_voxels, 3}, 0, paddle::DataType::INT32,
paddle::CPUPlace());
auto *coords_data = coords.data<int>();
auto num_points_per_voxel = paddle::full(
{max_voxels}, 0, paddle::DataType::INT32, paddle::CPUPlace());
auto *num_points_per_voxel_data = num_points_per_voxel.data<int>();
std::fill(num_points_per_voxel_data,
num_points_per_voxel_data + num_points_per_voxel.size(),
static_cast<int>(0));
auto num_voxels =
paddle::full({1}, 0, paddle::DataType::INT32, paddle::CPUPlace());
auto *num_voxels_data = num_voxels.data<int>();
auto grid_idx_to_voxel_idx =
paddle::full({grid_size_z, grid_size_y, grid_size_x}, -1,
paddle::DataType::INT32, paddle::CPUPlace());
auto *grid_idx_to_voxel_idx_data = grid_idx_to_voxel_idx.data<int>();
PD_DISPATCH_FLOATING_TYPES(
points.type(), "hard_voxelize_cpu_kernel", ([&] {
hard_voxelize_cpu_kernel<data_t, int>(
points.data<data_t>(), point_cloud_range_x_min,
point_cloud_range_y_min, point_cloud_range_z_min, voxel_size_x,
voxel_size_y, voxel_size_z, grid_size_x, grid_size_y, grid_size_z,
num_points, num_point_dim, max_num_points_in_voxel, max_voxels,
voxels.data<data_t>(), coords_data, num_points_per_voxel_data,
grid_idx_to_voxel_idx_data, num_voxels_data);
}));
return {voxels, coords, num_points_per_voxel, num_voxels};
}
#if defined(PADDLE_WITH_CUDA) && defined(WITH_GPU)
std::vector<paddle::Tensor> hard_voxelize_cuda(
const paddle::Tensor &points, const std::vector<float> &voxel_size,
const std::vector<float> &point_cloud_range, int max_num_points_in_voxel,
int max_voxels);
#endif
std::vector<paddle::Tensor> hard_voxelize(
const paddle::Tensor &points, const std::vector<float> &voxel_size,
const std::vector<float> &point_cloud_range,
const int max_num_points_in_voxel, const int max_voxels) {
if (points.is_cpu()) {
return hard_voxelize_cpu(points, voxel_size, point_cloud_range,
max_num_points_in_voxel, max_voxels);
#if defined(PADDLE_WITH_CUDA) && defined(WITH_GPU)
} else if (points.is_gpu() || points.is_gpu_pinned()) {
return hard_voxelize_cuda(points, voxel_size, point_cloud_range,
max_num_points_in_voxel, max_voxels);
#endif
} else {
PD_THROW(
"Unsupported device type for hard_voxelize "
"operator.");
}
}
std::vector<std::vector<int64_t>> HardInferShape(
std::vector<int64_t> points_shape, const std::vector<float> &voxel_size,
const std::vector<float> &point_cloud_range,
const int &max_num_points_in_voxel, const int &max_voxels) {
return {{max_voxels, max_num_points_in_voxel, points_shape[1]},
{max_voxels, 3},
{max_voxels},
{1}};
}
std::vector<paddle::DataType> HardInferDtype(paddle::DataType points_dtype) {
return {points_dtype, paddle::DataType::INT32, paddle::DataType::INT32,
paddle::DataType::INT32};
}
} // namespace fastdeploy
} // namespace paddle_custom_ops
PD_BUILD_OP(hard_voxelize)
.Inputs({"POINTS"})
.Outputs({"VOXELS", "COORS", "NUM_POINTS_PER_VOXEL", "num_voxels"})
.SetKernelFn(PD_KERNEL(fastdeploy::paddle_custom_ops::hard_voxelize))
.Attrs({"voxel_size: std::vector<float>",
"point_cloud_range: std::vector<float>",
"max_num_points_in_voxel: int", "max_voxels: int"})
.SetInferShapeFn(PD_INFER_SHAPE(fastdeploy::paddle_custom_ops::HardInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(fastdeploy::paddle_custom_ops::HardInferDtype));