mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 9205c88da1
			
		
	
	9205c88da1
	
	
		
			
	
		
	
	
		
			Some checks failed
		
		
	
	CE Compile Job / ce_job_pre_check (push) Has been cancelled
				
			CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
				
			CE Compile Job / FD-Clone-Linux (push) Has been cancelled
				
			CE Compile Job / Show Code Archive Output (push) Has been cancelled
				
			CE Compile Job / BUILD_SM8090 (push) Has been cancelled
				
			CE Compile Job / BUILD_SM8689 (push) Has been cancelled
				
			CE Compile Job / CE_UPLOAD (push) Has been cancelled
				
			Deploy GitHub Pages / deploy (push) Has been cancelled
				
			
		
			
				
	
	
		
			203 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| file_dir = "./gpu_ops/w4afp8_gemm/"
 | |
| 
 | |
| gemm_template_head = """
 | |
| #pragma once
 | |
| #include <assert.h>
 | |
| #include <stdint.h>
 | |
| #include <stdlib.h>
 | |
| #include <cuda_fp16.h>
 | |
| #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
 | |
| #include <cuda_bf16.h>
 | |
| #endif
 | |
| #include <cute/tensor.hpp>
 | |
| #include <cutlass/array.h>
 | |
| #include <cutlass/cutlass.h>
 | |
| #include <cutlass/numeric_conversion.h>
 | |
| #include <cutlass/numeric_types.h>
 | |
| """
 | |
| gemm_template_case = """
 | |
| void w4afp8_gemm_M{M}_N{N}_TAILN{TAILN}_K{K}_B{BATCH}_P{PADDING}_{TYPE}(
 | |
|     const cutlass::float_e4m3_t * weight,
 | |
|     const cutlass::float_e4m3_t * input,
 | |
|     {cutlass_type} * out,
 | |
|     const float *weight_scale,
 | |
|     const float *input_row_sum,
 | |
|     const int64_t *tokens,
 | |
|     const int64_t max_tokens,
 | |
|     cudaStream_t stream);
 | |
| """
 | |
| 
 | |
| gemm_template_cu_head = """
 | |
| #include "paddle/extension.h"
 | |
| #include "w4afp8_gemm_template.h"
 | |
| #include "w4afp8_gemm_kernel.hpp"
 | |
| 
 | |
| """
 | |
| gemm_template_cu_template = """
 | |
| void w4afp8_gemm_M{M}_N{N}_TAILN{TAILN}_K{K}_B{BATCH}_P{PADDING}_{TYPE}(
 | |
|         const cutlass::float_e4m3_t * weight,
 | |
|         const cutlass::float_e4m3_t * input,
 | |
|         {cutlass_type} * out,
 | |
|         const float *weight_scale,
 | |
|         const float *input_row_sum,
 | |
|         const int64_t *tokens,
 | |
|         const int64_t max_tokens,
 | |
|         cudaStream_t stream) {{
 | |
| 
 | |
|     constexpr static int M = {M};
 | |
|     constexpr static int K = {K};
 | |
|     constexpr static int Batch = {BATCH};
 | |
|     constexpr static int TokenPackSize = {PADDING};
 | |
|     constexpr static int kBlockN = {N};
 | |
|     constexpr static int kBlockN_TAIL = {TAILN};
 | |
|     constexpr static int kBlockM = 128;
 | |
|     constexpr static int kBlockK = 128;
 | |
|     constexpr static int kNWarps = 4 + kBlockM / 16;
 | |
|     constexpr static int kStages = 5;
 | |
|     constexpr int kCluster = 1;
 | |
|     static_assert(K % kBlockK == 0);
 | |
|     constexpr int kTiles = K / kBlockK;
 | |
| 
 | |
|     using Kernel_traits = Kernel_traits<
 | |
|         kBlockM, kBlockN, kBlockK, kNWarps, kStages, kTiles,
 | |
|         M, TokenPackSize, kBlockN_TAIL, kCluster, cutlass::float_e4m3_t,
 | |
|         {cutlass_type}>;
 | |
|     run_gemm<cutlass::float_e4m3_t, {cutlass_type},
 | |
|         Kernel_traits, M, K, Batch, TokenPackSize>
 | |
|         (weight, input, out, weight_scale,
 | |
|         input_row_sum, tokens, max_tokens, stream);
 | |
| }}
 | |
| """
 | |
| 
 | |
| gemm_case = [[256, 256, 1, 0]]
 | |
| 
 | |
| dtype = ["BF16"]
 | |
| 
 | |
| 
 | |
| def get_cutlass_type(type):
 | |
|     if type == "BF16":
 | |
|         return "cutlass::bfloat16_t"
 | |
|     elif type == "FP16":
 | |
|         return "cutlass::half_t"
 | |
| 
 | |
| 
 | |
| template_head_file = open(f"{file_dir}w4afp8_gemm_template.h", "w")
 | |
| template_head_file.write(gemm_template_head)
 | |
| 
 | |
| for type in dtype:
 | |
|     for case in gemm_case:
 | |
|         for n in range(16, 257, 16):
 | |
|             template_head_file.write(
 | |
|                 gemm_template_case.format(
 | |
|                     M=case[0],
 | |
|                     K=case[1],
 | |
|                     N=n,
 | |
|                     BATCH=case[2],
 | |
|                     TYPE=type,
 | |
|                     PADDING=case[3],
 | |
|                     TAILN=0,
 | |
|                     cutlass_type=get_cutlass_type(type),
 | |
|                 )
 | |
|             )
 | |
|             template_head_file.write(
 | |
|                 gemm_template_case.format(
 | |
|                     M=case[0],
 | |
|                     K=case[1],
 | |
|                     N=256,
 | |
|                     BATCH=case[2],
 | |
|                     TYPE=type,
 | |
|                     PADDING=case[3],
 | |
|                     TAILN=n - 16,
 | |
|                     cutlass_type=get_cutlass_type(type),
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|             template_cu_file = open(
 | |
|                 f"{file_dir}w4afp8_gemm_M{case[0]}_N{n}_TAILN{0}_K{case[1]}_B{case[2]}_P{case[3]}_{type}.cu", "w"
 | |
|             )
 | |
|             template_cu_file.write(gemm_template_cu_head)
 | |
|             template_cu_file.write(
 | |
|                 gemm_template_cu_template.format(
 | |
|                     M=case[0],
 | |
|                     K=case[1],
 | |
|                     N=n,
 | |
|                     BATCH=case[2],
 | |
|                     TYPE=type,
 | |
|                     PADDING=case[3],
 | |
|                     TAILN=0,
 | |
|                     cutlass_type=get_cutlass_type(type),
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|             template_cu_file.close()
 | |
| 
 | |
|             template_cu_file = open(
 | |
|                 f"{file_dir}w4afp8_gemm_M{case[0]}_N{256}_TAILN{n-16}_K{case[1]}_B{case[2]}_P{case[3]}_{type}.cu", "w"
 | |
|             )
 | |
|             template_cu_file.write(gemm_template_cu_head)
 | |
|             template_cu_file.write(
 | |
|                 gemm_template_cu_template.format(
 | |
|                     M=case[0],
 | |
|                     K=case[1],
 | |
|                     N=256,
 | |
|                     BATCH=case[2],
 | |
|                     TYPE=type,
 | |
|                     PADDING=case[3],
 | |
|                     TAILN=n - 16,
 | |
|                     cutlass_type=get_cutlass_type(type),
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|             template_cu_file.close()
 | |
| 
 | |
| for type in dtype:
 | |
|     template_head_file.write("\n")
 | |
|     template_head_file.write(
 | |
|         """#define GEMM_SWITCH_{TYPE}(_M, _K, _BATCH, _TokenPaddingSize, _kBlockN, _TailN, ...)  {{        \\
 | |
|     if (_M == 0 && _K == 0 && _BATCH == 0 && _TokenPaddingSize == 0 && _kBlockN == 0 && _TailN == 0) {{    \\""".format(
 | |
|             TYPE=type
 | |
|         )
 | |
|     )
 | |
| 
 | |
|     template_head_file.write("\n")
 | |
| 
 | |
|     for case in gemm_case:
 | |
|         for n in range(16, 257, 16):
 | |
|             template_head_file.write(
 | |
|                 """    }} else if (_M == {M} && _K == {K} && _BATCH == {BATCH} && _TokenPaddingSize == {PADDING} && _kBlockN == {N} && _TailN == {TAILN}) {{                        \\
 | |
|         w4afp8_gemm_M{M}_N{N}_TAILN{TAILN}_K{K}_B{BATCH}_P{PADDING}_{TYPE}(__VA_ARGS__);  \\""".format(
 | |
|                     M=case[0], K=case[1], N=n, BATCH=case[2], TYPE=type, PADDING=case[3], TAILN=0
 | |
|                 )
 | |
|             )
 | |
|             template_head_file.write("\n")
 | |
|             template_head_file.write(
 | |
|                 """    }} else if (_M == {M} && _K == {K} && _BATCH == {BATCH} && _TokenPaddingSize == {PADDING} && _kBlockN == {N} && _TailN == {TAILN}) {{                        \\
 | |
|         w4afp8_gemm_M{M}_N{N}_TAILN{TAILN}_K{K}_B{BATCH}_P{PADDING}_{TYPE}(__VA_ARGS__);  \\""".format(
 | |
|                     M=case[0], K=case[1], N=256, BATCH=case[2], TYPE=type, PADDING=case[3], TAILN=n - 16
 | |
|                 )
 | |
|             )
 | |
|             template_head_file.write("\n")
 | |
| 
 | |
|     template_head_file.write(
 | |
|         """    } else {   \\
 | |
|             PADDLE_THROW(phi::errors::Unimplemented("W4aFp8 not supported m=%d k=%d  batch=%d  token_padding_size=%d  kBlockN=%d  tailN=%d\\n", _M, _K, _BATCH, _TokenPaddingSize, _kBlockN, _TailN));    \\
 | |
|         }     \\
 | |
|     }"""
 | |
|     )
 | |
| 
 | |
| template_head_file.close()
 |