mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			215 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			215 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <iostream>
 | |
| #include <vector>
 | |
| #include <string>
 | |
| #include <algorithm>
 | |
| #include <chrono>
 | |
| #include <cstdlib>
 | |
| #include "paddle/extension.h"
 | |
| 
 | |
| #ifndef PD_BUILD_STATIC_OP
 | |
| #define PD_BUILD_STATIC_OP(name) PD_BUILD_OP(static_op_##name)
 | |
| #endif
 | |
| 
 | |
| int sum(const int *value, int num) {
 | |
|     int sum_value = 0;
 | |
|     for (int i = 0; i <= num; i++) {
 | |
|         sum_value += value[i];
 | |
|     }
 | |
|     return sum_value;
 | |
| }
 | |
| 
 | |
| void find_candidate_pred_tokens(const int64_t *input_ids,
 | |
|         const int64_t *input_ids_len,
 | |
|         const int64_t *pre_ids,
 | |
|         const int64_t *step_idx,
 | |
|         const int *draft_token_num,
 | |
|         int64_t *draft_tokens,
 | |
|         int32_t *seq_lens_this_time,
 | |
|         int32_t *seq_lens_encoder,
 | |
|         int32_t *seq_lens_decoder,
 | |
|         int64_t *max_dec_len,
 | |
|         int64_t input_ids_stride,
 | |
|         int64_t pre_ids_stride,
 | |
|         int64_t draft_tokens_stride,
 | |
|         int64_t max_batch_size,
 | |
|         int max_ngram_size = 3,
 | |
|         int max_draft_tokens = 10) {
 | |
|     int threshold = 128;
 | |
|     char *env_var = getenv("INFER_WITH_REFERENCE_TOKENUM_THRESHOLD");
 | |
|     if (env_var) {
 | |
|         threshold = std::stoi(env_var);
 | |
|     }
 | |
|     int unprocessed_batch_size = 0;
 | |
|     for (int batch_idx = 0; batch_idx < max_batch_size; batch_idx++) {
 | |
|         if (seq_lens_encoder[batch_idx] > 0 || seq_lens_decoder[batch_idx] > 0) {
 | |
|             unprocessed_batch_size++;
 | |
|         }
 | |
|     }
 | |
|     for (int batch_idx = 0; batch_idx < max_batch_size; batch_idx++) {
 | |
|         max_draft_tokens = std::min(static_cast<int64_t>(
 | |
|             draft_token_num[batch_idx]), max_dec_len[batch_idx] - step_idx[batch_idx] - 1);
 | |
|         if (seq_lens_encoder[batch_idx] > 0) {
 | |
|             continue;
 | |
|         } else if (seq_lens_decoder[batch_idx] == 0) {
 | |
|             seq_lens_this_time[batch_idx] = 0;
 | |
|             continue;
 | |
|         }
 | |
|         // printf("bid: %d. enc: %d. dec. %d\n", batch_idx, seq_lens_encoder[batch_idx], seq_lens_decoder[batch_idx]);
 | |
| 
 | |
|         const int64_t *cur_input_ids = input_ids + batch_idx * input_ids_stride;
 | |
|         int64_t *cur_draft_tokens = draft_tokens + batch_idx * draft_tokens_stride;
 | |
|         const int64_t *cur_pre_ids = pre_ids + batch_idx * pre_ids_stride;
 | |
|         const int64_t cur_step_idx = step_idx[batch_idx];
 | |
|         const int64_t cur_input_ids_len = input_ids_len[batch_idx];
 | |
|         seq_lens_this_time[batch_idx] = 1;
 | |
|         unprocessed_batch_size--;
 | |
| 
 | |
|         auto sum_token_num = sum(seq_lens_this_time, batch_idx);
 | |
|         int left_min_token_num = unprocessed_batch_size;
 | |
| 
 | |
|         if (sum_token_num + max_draft_tokens + left_min_token_num > threshold) {
 | |
|             int tmp_max_draft_tokens = threshold - sum_token_num - left_min_token_num;
 | |
|             max_draft_tokens = tmp_max_draft_tokens < max_draft_tokens ? tmp_max_draft_tokens : max_draft_tokens;
 | |
|         }
 | |
| 
 | |
|         if (sum_token_num + left_min_token_num >= threshold - 1) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         for (int ngram_size = max_ngram_size; ngram_size > 0; --ngram_size) {
 | |
|             // Extract the last n tokens as our search ngram
 | |
|             if (cur_step_idx < ngram_size) {
 | |
|                 continue;
 | |
|             }
 | |
|             const int64_t *ngram = cur_pre_ids + (cur_step_idx + 1 - ngram_size);
 | |
| 
 | |
|             // Iterate through sliding windows of size ngram_size
 | |
|             bool match_input = false;
 | |
|             for (int64_t i = 0; i <= cur_input_ids_len - ngram_size; ++i) {
 | |
|                 // Check if the current window matches the ngram
 | |
|                 bool match = true;
 | |
|                 for (int j = 0; j < ngram_size; j++) {
 | |
|                     if (ngram[j] != cur_input_ids[i + j]) {
 | |
|                         match = false;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (match) {
 | |
|                     int64_t start_idx = i + ngram_size;
 | |
|                     int64_t end_idx = std::min(start_idx + max_draft_tokens, cur_input_ids_len);
 | |
|                     if (start_idx >= end_idx)
 | |
|                         continue;
 | |
| 
 | |
|                     int64_t cur_draft_token_num = end_idx - start_idx;
 | |
| 
 | |
|                     seq_lens_this_time[batch_idx] = cur_draft_token_num + 1;
 | |
|                     memcpy(cur_draft_tokens + 1, cur_input_ids + start_idx, sizeof(int64_t) * cur_draft_token_num);
 | |
|                     // To break the current batch_idx for-loop
 | |
|                     ngram_size = 0;
 | |
|                     match_input = true;
 | |
|                     break;
 | |
|                     // }
 | |
|                 }
 | |
|             }
 | |
|             if (!match_input) {
 | |
|                 for (int64_t i = 0; i <= cur_step_idx - ngram_size; ++i) {
 | |
|                     // Check if the current window matches the ngram
 | |
|                     bool match = true;
 | |
| 
 | |
|                     for (int j = 0; j < ngram_size; j++) {
 | |
|                         if (ngram[j] != cur_pre_ids[i + j]) {
 | |
|                             match = false;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     if (match) {
 | |
|                         int64_t start_idx = i + ngram_size;
 | |
|                         int64_t end_idx = std::min(start_idx + max_draft_tokens, cur_step_idx);
 | |
|                         int64_t cur_draft_token_num = end_idx - start_idx;
 | |
|                         if (start_idx >= end_idx)
 | |
|                             continue;
 | |
| 
 | |
|                         seq_lens_this_time[batch_idx] = cur_draft_token_num + 1;
 | |
|                         memcpy(cur_draft_tokens + 1, cur_pre_ids + start_idx, sizeof(int64_t) * cur_draft_token_num);
 | |
|                         ngram_size = 0;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void NgramMatch(const paddle::Tensor &input_ids,
 | |
|         const paddle::Tensor &input_ids_len,
 | |
|         const paddle::Tensor &pre_ids,
 | |
|         const paddle::Tensor &step_idx,
 | |
|         const paddle::Tensor &draft_token_num,
 | |
|         const paddle::Tensor &draft_tokens,
 | |
|         const paddle::Tensor &seq_lens_this_time,
 | |
|         const paddle::Tensor &seq_lens_encoder,
 | |
|         const paddle::Tensor &seq_lens_decoder,
 | |
|         const paddle::Tensor &max_dec_len,
 | |
|         const int max_ngram_size,
 | |
|         const int max_draft_tokens) {
 | |
| 
 | |
|     auto input_ids_shape = input_ids.shape();
 | |
|     const int64_t input_ids_stride = input_ids_shape[1];
 | |
| 
 | |
|     auto pre_ids_shape = pre_ids.shape();
 | |
|     const int64_t pre_ids_stride = pre_ids_shape[1];
 | |
| 
 | |
|     auto draft_tokens_shape = draft_tokens.shape();
 | |
|     const int64_t draft_tokens_stride = draft_tokens_shape[1];
 | |
| 
 | |
|     const int64_t max_batch_size = seq_lens_this_time.shape()[0];
 | |
| 
 | |
|     find_candidate_pred_tokens(input_ids.data<int64_t>(),
 | |
|             input_ids_len.data<int64_t>(),
 | |
|             pre_ids.data<int64_t>(),
 | |
|             step_idx.data<int64_t>(),
 | |
|             draft_token_num.data<int>(),
 | |
|             const_cast<int64_t *>(draft_tokens.data<int64_t>()),
 | |
|             const_cast<int32_t *>(seq_lens_this_time.data<int32_t>()),
 | |
|             const_cast<int32_t *>(seq_lens_encoder.data<int32_t>()),
 | |
|             const_cast<int32_t *>(seq_lens_decoder.data<int32_t>()),
 | |
|             const_cast<int64_t *>(max_dec_len.data<int64_t>()),
 | |
|             input_ids_stride,
 | |
|             pre_ids_stride,
 | |
|             draft_tokens_stride,
 | |
|             max_batch_size,
 | |
|             max_ngram_size,
 | |
|             max_draft_tokens);
 | |
| }
 | |
| 
 | |
| PD_BUILD_STATIC_OP(ngram_match)
 | |
|         .Inputs({"input_ids",
 | |
|                 "input_ids_len",
 | |
|                 "pre_ids",
 | |
|                 "step_idx",
 | |
|                 "draft_token_num",
 | |
|                 "draft_tokens",
 | |
|                 "seq_lens_this_time",
 | |
|                 "seq_lens_encoder",
 | |
|                 "seq_lens_decoder",
 | |
|                 "max_dec_len"})
 | |
|         .Attrs({"max_ngram_size: int", "max_draft_tokens: int"})
 | |
|         .Outputs({"draft_tokens_out", "seq_lens_this_time_out"})
 | |
|         .SetKernelFn(PD_KERNEL(NgramMatch))
 | |
|         .SetInplaceMap({{"draft_tokens", "draft_tokens_out"}, {"seq_lens_this_time", "seq_lens_this_time_out"}});
 | 
